[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

You are experienced: interactive tour planning with crowdsourcing tour data from web

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Planning an ideal tour schedule is a tedious process, where the attractions to visit and the order of visits need to be carefully determined. In this paper, we propose a novel interactive approach for tour planning. We first extract prior tourists’ experiences from the crowdsourcing tour data on the Web using frequent substring mining. We then design and implement a planning tool equipped with interactive visualizations, enabling users to learn the extracted experiences and plan their own tours. Our approach is evaluated with two usage scenarios on real-world tour data in two cities. Compared with previous methods, our approach strikes a balance between efficiency and reliability. On the one hand, we support the interactive manipulation of attraction sequence (i.e., multiple attractions at a time), thereby ensuring efficiency. On the other hand, we keep humans in the loop of the tour planning process via interactive visualizations. This paper shows the value of tour data published by tourists on the Web for personalized tour planning.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Proceedings of the international conference on very large data bases, pp 487–499

  • Andrienko GL, Andrienko NV, Bak P, Keim DA, Wrobel S (2013) Visual analytics of movement. Springer, Berlin

    Book  Google Scholar 

  • Andrienko NV, Andrienko GL, Miksch S, Schumann H, Wrobel S (2021) A theoretical model for pattern discovery in visual analytics. Vis Inform 5(1):23–42

    Article  Google Scholar 

  • Bai J, Zhang H, Qu D, Lv C, Shao W (2021) FGVis: visual analytics of human mobility patterns and urban areas based on f-glove. J Vis 24(6):1319–1335

    Article  Google Scholar 

  • Brennan S, Meier R (2007) STIS: smart travel planning across multiple modes of transportation. In: Proceedings of IEEE intelligent transportation systems conference, pp 666–671

  • Chen S, Yuan X, Wang Z, Guo C, Liang J, Wang Z, Zhang XL, Zhang J (2016) Interactive visual discovering of movement patterns from sparsely sampled geo-tagged social media data. IEEE Trans Vis Comput Gr 22(1):270–279

    Article  Google Scholar 

  • Claudio P, Yoon S (2014) Metro transit-centric visualization for city tour planning. Comput Graph Forum 33(3):271–280

    Article  Google Scholar 

  • Contractor D, Goel S, Mausam, Singla P (2021) Joint Spatio-textual reasoning for answering tourism questions. In: Proceedings of the world wide web conference, ACM/IW3C2, pp 1978–1989

  • Dadoun A, Troncy R, Ratier O, Petitti R (2019) Location embeddings for next trip recommendation. In: Companion of proceedings of the World Wide Web conference, ACM, pp 896–903

  • Deng Z, Weng D, Chen J, Liu R, Wang Z, Bao J, Zheng Y, Wu Y (2020) AirVis: visual analytics of air pollution propagation. IEEE Trans Vis Comput Graph 26(1):800–810

    Google Scholar 

  • Deng Z, Weng D, Liang Y, Bao J, Zheng Y, Schreck T, Xu M, Wu Y (2022) Visual cascade analytics of large-scale spatiotemporal data. IEEE Trans on Vis Comput Graph 28(6):2486–2499

    Google Scholar 

  • Deng Z, Weng D, Xie X, Bao J, Zheng Y, Xu M, Chen W, Wu Y (2022) Compass: towards better causal analysis of urban time series. IEEE Trans Vis Comput Graph 28(1):1051–1061

    Article  Google Scholar 

  • Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y (2023) A survey of urban visual analytics: advances and future directions. Comput Vis Media. https://doi.org/10.1007/s41095-022-0275-7

    Article  Google Scholar 

  • Dunstall S, Horn MET, Kilby P, Krishnamoorthy M, Owens B, Sier D, Thiébaux S (2003) An automated itinerary planning system for holiday travel. Inf Technol Tour 6(3):195–210

    Article  Google Scholar 

  • Google (2022) Google travel. https://www.google.com/travel/. Accessed 26 Apr 2022

  • Guo Y, Guo S, Jin Z, Kaul S, Gotz D, Cao N (2021) Survey on visual analysis of event sequence data. IEEE Trans Vis Comput Graph. https://doi.org/10.1109/TVCG.2021.3100413

    Article  Google Scholar 

  • Guo Y, Guo S, Jin Z, Kaul S, Gotz D, Cao N (2021) A survey on visual analysis of event sequence data. IEEE Trans Vis Comput Graph. https://doi.org/10.1109/TVCG.2021.3100413

    Article  Google Scholar 

  • Han J, Cheng H, Xin D, Yan X (2007) Frequent pattern mining: current status and future directions. Data Min Knowl Discov 15(1):55–86

    Article  MathSciNet  Google Scholar 

  • Herzog D, Sikander S, Wörndl W (2019) Integrating route attractiveness attributes into tourist trip recommendations. In: Companion of proceedings of the world wide web conference, ACM, pp 96–101

  • Hu F, Li Z, Yang C, Jiang Y (2019) A graph-based approach to detecting tourist movement patterns using social media data. Cartogr Geogr Inf Sci 46(4):368–382

    Article  Google Scholar 

  • Inspirock (2022) Trip Planner: plan & manage your vacation itinerary on Inspirock. https://www.inspirock.com/. Accessed 26 Ap 2022

  • Jamonnak S, Zhao Y, Huang X, Amiruzzaman M (2022) Geo-context aware study of vision-based autonomous driving models and spatial video data. IEEE Trans Vis Comput Graph 28(1):1019–1029

    Article  Google Scholar 

  • Ji X, Bailey J (2007) An efficient technique for mining approximately frequent substring patterns. In: Workshops proceedings of ICDM, pp 325–330

  • Kádár B, Gede M (2013) Where do tourists go? Visualizing and analysing the spatial distribution of geotagged photography. Cartogr Int J Geogr Inf Geovis 48(2):78–88

    Google Scholar 

  • Kinoshita Y, Yokokishizawa H (2008) A tour route planning support system with consideration of the preferences of group members. In: Proceedings of the IEEE international conference on systems, man and cybernetics, pp 150–155

  • Klein K, Jaeger S, Melzheimer J, Wachter B, Hofer H, Baltabayev A, Schreiber F (2021) Visual analytics of sensor movement data for cheetah behaviour analysis. J Vis 24(4):807–825

    Article  Google Scholar 

  • Kurashima T, Iwata T, Irie G, Fujimura K (2010) Travel route recommendation using geotags in photo sharing sites. Proc CIKM 2010:579–588

    Google Scholar 

  • Kurata Y, Hara T (2014) CT-Planner4: toward a more user-friendly interactive day-tour planner. In: Proceedings of international conference on information and communication technologies, Springer, pp 73–86

  • Lee SD, Raedt LD (2004) An efficient algorithm for mining string databases under constraints. In: Proceedings of international workshop on knowledge discovery in inductive databases, vol 3377, pp 108–129

  • Lee JY, Tsou M (2018) Mapping spatiotemporal tourist behaviors and hotspots through location-based photo-sharing service (flickr) data. In: Krisp JM (ed) Progress in location based services. Springer, Berlin, pp 315–334

    Google Scholar 

  • Li Q, Liu QQ, Tang CF, Li ZW, Wei SC, Peng XR, Zheng MH, Chen TJ, Yang Q (2020) Warehouse Vis: a visual analytics approach to facilitating warehouse location selection for business districts. Comput Graph Forum 39(3):483–495

    Article  Google Scholar 

  • Lim KH, Wang X, Chan J, Karunasekera S, Leckie C, Chen Y, Tan CL, Gao FQ, Wee TK (2016) PersTour: A personalized tour recommendation and planning system. In: Late-breaking Results, demos, doctoral consortium, workshops proceedings and creative track of the ACM conference on hypertext and social media, CEUR workshop proceedings, vol 1628

  • Lim KH, Chan J, Karunasekera S, Leckie C (2019) Tour recommendation and trip planning using location-based social media: a survey. Knowl Inf Syst 60(3):1247–1275

    Article  Google Scholar 

  • Liu QQ, Li Q, Tang CF, Lin H, Ma X, Chen T (2020) A visual analytics approach to scheduling customized shuttle buses via perceiving passengers’ travel demands. In: Proceedings of IEEE visualization conference, pp 76–80

  • Liu D, Weng D, Li Y, Bao J, Zheng Y, Qu H, Wu Y (2017) SmartAdP: visual analytics of large-scale taxi trajectories for selecting billboard locations. IEEE Trans Vis Comput Graph 23(1):1–10

    Article  Google Scholar 

  • Liu D, Xu P, Ren L (2019) TPFlow: progressive partition and multidimensional pattern extraction for large-scale Spatio-temporal data analysis. IEEE Trans Vis Comput Graph 25(1):1–11

    Article  Google Scholar 

  • Liu H, Chen X, Wang Y, Zhang B, Chen Y, Zhao Y, Zhou F (2021) Visualization and visual analysis of vessel trajectory data: a survey. Vis Inf 5(4):1–10

    Google Scholar 

  • Liu L, Zhang H, Liu J, Liu S, Chen W, Man J (2021) Visual exploration of urban functional zones based on augmented nonnegative tensor factorization. J Vis 24(2):331–347

    Article  Google Scholar 

  • Liu S, Weng D, Tian Y, Deng Z, Xu H, Zhu X, Yin H, Zhan X, Wu Y (2023) ECoalVis: visual analysis of control strategies in coal-fired power plants. IEEE Trans Vis Comput Graph 29(1) (to appear)

  • Nguyen VT, Jung K, Gupta V (2021) Examining data visualization pitfalls in scientific publications. Vis Comput Ind Biomed Art 4(1):27

    Article  Google Scholar 

  • Nomiyama M, Takeuchi T, Onimaru H, Tanikawa T, Narumi T, Hirose M (2018) Xnavi: travel planning system based on experience flows. ACM Interact Mob Wearable Ubiquitous Technol 2(1):1–25

    Article  Google Scholar 

  • Sharda N, Ponnada M (2008) Tourism blog visualizer for better tour planning. J Vacat Market 14(2):157–167

    Article  Google Scholar 

  • Shi L, Zhao H, Li Y, Ma H, Yang S, Wang H (2015) Evaluation of Shangri-la county’s tourism resources and ecotourism carrying capacity. Int J Sustain Dev World Ecol 22(2):103–109

    Article  Google Scholar 

  • Silamai N, Khamchuen N, Phithakkitnukoon S (2017) TripRec: trip plan recommendation system that enhances hotel services. In: Adjunct proceedings of the ACM international joint conference on pervasive and ubiquitous computing and proceedings of the ACM international symposium on wearable computers, ACM, pp 412–420

  • Takenouchi K, Choh I (2021) Development of a support system for creating disaster prevention maps focusing on road networks and hazardous elements. Vis Comput Ind Biomed Art 4(1):22

    Article  Google Scholar 

  • Taylor K, Lim KH, Chan J (2018) Travel itinerary recommendations with must-see points-of-interest. In: Companion of proceedings of the World Wide Web Conference, ACM, pp 1198–1205

  • Thudt A, Baur D, Huron S, Carpendale S (2016) Visual mementos: reflecting memories with personal data. IEEE Trans Vis Comput Graph 22(1):369–378

    Article  Google Scholar 

  • Tominski C, Andrienko GL, Andrienko NV, Bleisch S, Fabrikant SI, Mayr E, Miksch S, Pohl M, Skupin A (2021) Toward flexible visual analytics augmented through smooth display transitions. Vis Inf 5(3):28–38

    Google Scholar 

  • Travelchime Inc (2022) Wanderlog: travel itineraries and trip planner. https://wanderlog.com/. Accessed 26 Apr 2022

  • Tripadvisor Inc (2022) Tripadvisor: read reviews, compare prices & book. https://www.tripadvisor.com/. Accessed 26 Apr 2022

  • Wang H, Ni Y, Sun L, Chen Y, Xu T, Chen X, Su W, Zhou Z (2021) Hierarchical visualization of geographical areal data with spatial attribute association. Vis Inf 5(3):82–91

    Google Scholar 

  • Wang Y, Liang H, Shu X, Wang J, Xu K, Deng Z, Campbell CD, Chen B, Wu Y, Qu H (2021) Interactive visual exploration of longitudinal historical career mobility data. IEEE Trans Vis Comput Graph. https://doi.org/10.1109/TVCG.2021.3067200

    Article  Google Scholar 

  • Wang Y, Peng T, Lu H, Wang H, Xie X, Qu H, Wu Y (2022) Seek for success: a visualization approach for understanding the dynamics of academic careers. IEEE Trans Vis Comput Graph 28(1):475–485

    Article  Google Scholar 

  • Wang Q, Yin H, Chen T, Huang Z, Wang H, Zhao Y, Hung NQV (2020) Next point-of-interest recommendation on resource-constrained mobile devices. In: Proceedings of the World Wide Web Conference, ACM/IW3C2, pp 906–916

  • Wei D, Li C, Shao H, Tan Z, Lin Z, Dong X, Yuan X (2021) SensorAware: visual analysis of both static and mobile sensor information. J Vis 24(3):597–613

    Article  Google Scholar 

  • Weng D, Chen R, Deng Z, Wu F, Chen J, Wu Y (2019) SRVis: towards better spatial integration in ranking visualization. IEEE Trans Vis Comput Graph 25(1):459–469

    Article  Google Scholar 

  • Weng D, Zheng C, Deng Z, Ma M, Bao J, Zheng Y, Xu M, Wu Y (2021) Towards better bus networks: a visual analytics approach. IEEE Trans Vis Comput Graph 27(2):817–827

    Article  Google Scholar 

  • Weng D, Zhu H, Bao J, Zheng Y, Wu Y (2018) HomeFinder revisited: finding ideal homes with reachability-centric multi-criteria decision making. In: Proceedings of the ACM CHI conference on human factors in computing systems, p 247

  • Wongsuphasawat K, Gómez JAG, Plaisant C, Wang TD, Taieb-Maimon M, Shneiderman B (2011) LifeFlow: visualizing an overview of event sequences. In: Proceedings of ACM CHI, pp 1747–1756

  • Wu Y, Lan J, Shu X, Ji C, Zhao K, Wang J, Zhang H (2018) iTTVis: interactive visualization of table tennis data. IEEE Trans Vis Comput Graph 24(1):709–718

    Article  Google Scholar 

  • Wu Y, Weng D, Deng Z, Bao J, Xu M, Wang Z, Zheng Y, Ding Z, Chen W (2021) Towards better detection and analysis of massive spatiotemporal co-occurrence patterns. IEEE Trans Intell Transp Syst 22(6):3387–3402

    Article  Google Scholar 

  • Wu J, Liu D, Guo Z, Xu Q, Wu Y (2022) TacticFlow: visual analytics of ever-changing tactics in racket sports. IEEE Trans Vis Comput Graph 28(1):835–845

    Article  Google Scholar 

  • Yahi A, Chassang A, Raynaud L, Duthil H, Chau DHP (2015) Aurigo: an interactive tour planner for personalized itineraries. In: Proceedings of the international conference on intelligent user interfaces, ACM, pp 275–285

  • Yim H, Ahn HJ, Kim JW, Park SJ (2004) Agent-based adaptive travel planning system in peak seasons. Exp Syst Appl 27(2):211–222

    Article  Google Scholar 

  • Zhang W, Ma Q, Pan R, Chen W (2021) Visual storytelling of song ci and the poets in the social-cultural context of song dynasty. Vis Inf 5(4):34–40

    Google Scholar 

  • Zhao Y, Shi J, Liu J, Zhao J, Zhou F, Zhang W, Chen K, Zhao X, Zhu C, Chen W (2021) Evaluating effects of background stories on graph perception. IEEE Trans Vis Comput Graph. https://doi.org/10.1109/TVCG.2021.3107297

    Article  Google Scholar 

  • Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol 6(3):1–41

    Article  Google Scholar 

  • Zheng F, Wen J, Zhang X, Chen Y, Zhang X, Liu Y, Xu T, Chen X, Wang Y, Su W, Zhou Z (2021) Visual abstraction of large-scale geographical point data with credible spatial interpolation. J Vis 24(6):1303–1317

    Article  Google Scholar 

Download references

Acknowledgements

We thank all reviewers for their constructive comments. We also thank Huachang Yu for his contribution in data collection. The work was supported by NSFC (62072400) and the Collaborative Innovation Center of Artificial Intelligence by MOE and Zhejiang Provincial Government (ZJU). This work was also partially funded by the Zhejiang Lab (2021KE0AC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Weng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 503 KB)

Supplementary file 2 (mp4 10328 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Weng, D. & Wu, Y. You are experienced: interactive tour planning with crowdsourcing tour data from web. J Vis 26, 385–401 (2023). https://doi.org/10.1007/s12650-022-00884-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-022-00884-1

Keywords

Navigation