[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Three-dimensional visualization of columnar vortices in rotating Rayleigh–Bénard convection

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

 To enrich the three-dimensional experimental details of vortex structures in rotating Rayleigh–Bénard convection, we established a technique visualizing three-dimensional vortex structures using scanning planar particle image velocimetry. Experiments were performed at fixed Rayleigh number, \(\hbox {Ra} = 1.0 \times 10^7\) and different Taylor numbers from \(\hbox {Ta} = 6.0 \times 10^6\) to \(1.0 \times 10^8\), corresponding to convective Rossby numbers from \(0.1 \le \hbox {Ro} \le 0.5\) at which gradual transition between vortical plumes and convective Taylor columns regime is observed. Stream function distributions calculated from horizontal velocity vector fields visualize the vortex structure formed in the regimes. As quantitative information extracted from the visualized structures, distances between vortices recognized on the distributions show a good agreement with that evaluated by a theory. With the accumulated planar stream function distributions and vertical velocity component calculated from the horizontal velocity vectors, the three-dimensional representations of vortices indicate that quasi-two-dimensional columnar vortices straighten in the vertical direction with increasing Ta.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Cerisier P, Perez-Garcia C, Jamond C, Pantaloni J (1987) Wavelength selection in Bénard-Marangoni convection. Phys Rev A 35:1949

    Article  Google Scholar 

  • Cheng JS, Stellmach S, Ribeiro A, Grannan A, King EM, Aurnou JM (2015) Laboratory-numerical models of rapidly rotating convection in planetary cores. Geophys J Int 201:1–17

    Article  Google Scholar 

  • Cheng JS, Aurnou JM, Julien K, Kunnen RPJ (2018) A heuristic framework for next-generation models of geostrophic convective turbulence. Geophys Astro Fluid 112(4):277–300

    Article  Google Scholar 

  • Greenspan HP (1968) The theory of rotating fluids. CUP Archive, Cambridge

    MATH  Google Scholar 

  • Julien K, Legg S, McWilliams J, Werne J (1996) Rapidly rotating turbulent Rayleigh–Bénard convection. J Fluid Mech 322:243–273

    Article  Google Scholar 

  • Julien K, Rubio AM, Grooms I, Knobloch E (2012) Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys Astro Fluid 106:392–428

    Article  Google Scholar 

  • Kunnen RPJ, Clercx HJH, Geurts BJ (2008) Breakdown of large-scale circulation in turbulent rotating convection. Europhys Lett 84:24001

    Article  Google Scholar 

  • Liu Y, Ecke RE (2009) Heat transport measurements in turbulent rotating Rayleigh–Bénard convection. Phys Rev E 80:036314

    Article  Google Scholar 

  • Mazzoni S, Giavazzi F, Cerbino R, Giglio M, Vailati A (2008) Mutual Voronoi tessellation in spoke pattern convection. Phys Rev Lett 100:188104

    Article  Google Scholar 

  • Noto D, Tasaka Y, Yanagisawa T, Park HJ, Murai Y (2018) Vortex tracking on visualized temperature fields in a rotating Rayleigh–Bénard convection. J Vis 6:987–998

    Article  Google Scholar 

  • Noto D, Tasaka Y, Yanagisawa T, Murai Y (2019) Horizontal diffusive motion of columnar vortices in rotating Rayleigh–Bénard convection. J Fluid Mech 871:401–426

    Article  MathSciNet  Google Scholar 

  • Rajaei H, Kunnen RPJ, Clercx HJH (2017) Exploring the geostrophic regime of rapidly rotating convection with experiments. Phys Fluids 29(4):045105

    Article  Google Scholar 

  • Sakai S (1997) The horizontal scale of rotating convection in the geostrophic regime. J Fluid Mech 333:85–95

    Article  Google Scholar 

  • Stellmach S, Lischper M, Julien K, Vasil G, Cheng JS, Ribeiro A, King EM, Aurnou JM (2014) Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys Rev Lett 113:254501

    Article  Google Scholar 

  • Stevens RJAM, Zhong JQ, Clercx HJH, Alhers G, Lohse D (2009) Transition between turbulent states in rotating Rayleigh–Bénard convection. Phys Rev Lett 103:024503

    Article  Google Scholar 

  • Stevens RJAM, Overkamp J, Lohse D, Clercx HJH (2011) Effect of aspect ratio on vortex distribution and heat transfer in rotating Rayleigh–Bénard convection. Phys Rev E 84:056313

    Article  Google Scholar 

  • Stevens RJAM, Clercx HJH, Lohse D (2013) Heat transport and flow structure in rotating Rayleigh–Bénard convection. Euro J Mech B/Fluids 40:41–49

    Article  Google Scholar 

  • Takehara K, Etoh T (1999) A study on particle identification in PTV particle mask correlation method. J Vis 1:313–323

    Article  Google Scholar 

  • Trouette B, Chénier E, Delcarte C, Guerrier B (2011) Numerical study of convection induced by evaporation in cylindrical geometry. Euro Phys J Spec Top 192:83–93

    Article  Google Scholar 

  • Ushijima S, Tanaka N (1996) Three-dimensional particle tracking velocimetry with laser-light sheet scannings. Trans ASME J Fluids Eng 118:352–357

    Article  Google Scholar 

  • Veronis G (1959) Cellular convection with finite amplitude in a rotating fluid. J Fluid Mech 5:401–435

    Article  MathSciNet  Google Scholar 

  • Vorobieff P, Ecke RE (2002) Turbulent rotating convection: an experimental study. J Fluid Mech 458:191–218

    Article  Google Scholar 

  • Watamura T, Tasaka Y, Murai Y (2013) Intensified and attenuated waves in a microbubble Taylor–Couette flow. Phys Fluids 25(5):054107

    Article  Google Scholar 

  • Weiss S, Ahlers G (2011) Heat transport by turbulent rotating Rayleigh–Bénard convection and its dependence on the aspect ratio. J Fluid Mech 309:1–20

    MATH  Google Scholar 

  • Zhong F, Ecke RE, Steinberg V (1993) Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states. J Fluid Mech 249:135–159

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant No. 24244073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Tasaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 1761 KB)

Supplementary material 2 (avi 1816 KB)

Supplementary material 3 (avi 3268 KB)

Supplementary material 4 (avi 2654 KB)

Supplementary material 5 (avi 2513 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, K., Tasaka, Y., Yanagisawa, T. et al. Three-dimensional visualization of columnar vortices in rotating Rayleigh–Bénard convection. J Vis 23, 635–647 (2020). https://doi.org/10.1007/s12650-020-00651-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-020-00651-0

Keywords

Navigation