[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Quantitative visualization of vortex ring structure during wall impingement subject to background rotation

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

A single vortex ring subject to background rotation in the process of wall impingement has been experimentally investigated by particle tracking velocimetry (PTV). Two parameter conditions of Reynolds and Rossby numbers were chosen in addition to stationary environment as much strong and competitive Coriolis force emerges in comparison with inertia induced by vortex rings. From horizontal PTV windows set on the rotating experimental frame above the bottom wall, comprehensive influences of Coriolis force on the wall-impinging reaction are visualized as space–time three-dimensional vorticity distributions. Against natural growth of azimuthal waves due to Widnall instability, wall-impinging suppresses the waves and rather re-organizes original primary vortex because of cyclonic swirl coherently induced during impingement. This resists to turbulent collapse of vortex ring during the impingement and self-boosts own life time. We try to explain the mechanism of such an anti-decaying process in the final part, untangling the phenomenon with best read from the space–time correlations among three vorticity components.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arévalo G, Hernández RH, Nicot C, Plaza F (2010) Particle image velocimetry measurements of vortex rings head-on collision with a heated vertical plate. Phys Fluids 22:053604

    MATH  Google Scholar 

  • Auerbach D (1988) Some open questions on the flow of circular vortex rings. Fluid Dyn Res 3:209–213

    Google Scholar 

  • Bethke N, Dalziel SB (2012) Resuspension onset and crater erosion by a vortex ring interacting with a particle layer. Phys Fluids 24:063301

    MATH  Google Scholar 

  • Boldes U, Ferreri JC (1973) Behavior of vortex rings in the vicinity of a wall. Phys Fluids 16(11):2005–2006

    Google Scholar 

  • Brend MA, Thomas PJ (2009) Decay of vortex rings in a rotating fluid. Phys Fluids 21(4):44105

    MATH  Google Scholar 

  • Cheng M, Lou J, Lim TT (2014) A numerical study of a vortex ring impacting a permeable wall. Phys Fluids 26:103602

    Google Scholar 

  • Chu CC, Wang CT, Chang CC (1995) A vortex ring impinging on a solid plane surface—vortex structure and surface force. Phys Fluids 7(6):1391–1401

    MATH  Google Scholar 

  • Dazin A, Dupont P, Stanislas M (2006) Experimental characterization of the instability of the vortex ring. Part I: linear phase. Exp Fluids 40:383–399

    Google Scholar 

  • Dziedzic M, Leutheusser HJ (1996) An experimental study of viscous vortex rings. Exp Fluids 21:315–324

    Google Scholar 

  • Gargan-Shingles C, Rudman M, Ryan K (2015) The evolution of swirling axisymmetric vortex ring. Phys Fluids 27:087101

    Google Scholar 

  • Gharib M, Rambod E, Shariff K (1998) A universal time scale for vortex ring formation. J Fluid Mech 360:121–140

    MathSciNet  MATH  Google Scholar 

  • Glezer A (1988) The formation of vortex rings. Phys Fluids 31:3532–3542

    Google Scholar 

  • Ido T, Murai Y (2006) A recursive interpolation algorithm for particle tracking velocimetry. Flow Meas Instrum 17:267–275

    Google Scholar 

  • Ido T, Murai Y, Yamamoto F (2002) Post-processing algorithm for particle tracking velocimetry based on ellipsoidal equations. Exp Fluids 32:326–336

    Google Scholar 

  • Ishikawa M, Murai Y, Wada A, Iguchi K, Yamamoto F (2000) A novel algorithm for particle tracking velocimetry using the velocity gradient tensor. Exp Fluids 29(6):519–531

    Google Scholar 

  • Jambunathan K, Lai E, Moss MA, Button BL (1992) A review of heat-transfer data for single circular jet impingement. Int J Heat Fluid Flow 13:106–115

    Google Scholar 

  • Kitaura H, Murai Y, Takeda Y, Thomas PJ (2010) Velocity vector field measurement of vortex rings using UVP. Trans Jpn Soc Mech Eng 76:2143–2151

    Google Scholar 

  • Krueger PS (2005) An over-pressure correction to the slug model for vortex ring circulation. J Fluid Mech 545:427–443

    MATH  Google Scholar 

  • Krueger PS, Gharib M (2003) The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys Fluids 15:1271–1281

    MathSciNet  MATH  Google Scholar 

  • Linden PF, Turner JS (2001) The formation of ‘optimal’ vortex rings and the efficient of propulsion devices. J Fluid Mech 427:61–72

    MATH  Google Scholar 

  • Luton JA, Ragab SA (1997) The three-dimensional interaction of a vortex pair with a wall. Phys Fluids 9(10):2967–2980

    MathSciNet  MATH  Google Scholar 

  • Martin H (1977) Heat and mass transfer between impinging gas jets and solid surfaces. Adv Heat Transf 13:1–60

    Google Scholar 

  • Masuda N, Yoshida J, Ito B, Furuya T, Sano O (2012) Collision of a vortex ring on granular material, part I: interaction of the vortex ring with the granular layer. Fluid Dyn Res 44:015501

    MATH  Google Scholar 

  • Misaka T, Holzäpfel F, Hennemann I, Gerz T, Manhart M, Schwertfirm F (2012) Vortex bursting and tracer transport of a counter-rotating vortex pair. Phys Fluids 24:025104

    Google Scholar 

  • Moffatt HK (1988) Generalised vortex rings with and without swirl. Fluid Dyn Res 3:22–30

    Google Scholar 

  • Mohseni K, Gharib M (1998) A model for universal time scales of vortex ring formation. Phys Fluids 10:2436–2438

    Google Scholar 

  • Mujal-Colilles A, Dalziel SB, Bateman A (2015) Vortex rings impinging on permeable boundaries. Phys Fluids 27:015106

    Google Scholar 

  • Murai Y, Vlaskamp JHA, Nambu Y, Yoshimoto T, Brend MA, Denissenko P, Thomas PJ (2013) Off-axis PTV for 3-D visualization of rotating columnar flows. Exp Therm Fluid Sci 51:342–353

    Google Scholar 

  • Murai Y, Tasaka Y, Oishi Y, Takeda Y (2018) Modal switching of bubbly Taylor–Couette flow investigated by particle tracking velocimetry. Exp Fluids 59:164

    Google Scholar 

  • Naaktgeboren C, Krueger PS, Lage JL (2012) Interaction of a laminar vortex ring with a thin permeable screen. J Fluid Mech 707:260–286

    MATH  Google Scholar 

  • Naguib AM, Koochesfahani MM (2004) On wall-pressure sources associated with the unsteady separation in a vortex-ring/wall interaction. Phys Fluids 16(7):2613–2622

    MATH  Google Scholar 

  • Naitoh T, Okura N, Gotoh T, Kato Y (2014) On the evolution of vortex rings with swirl. Phys Fluids 26:067101

    Google Scholar 

  • Norbury J (1973) A family of steady vortex ring. J Fluid Mech 57:417–431

    MATH  Google Scholar 

  • Orlandi P, Verzicco R (1993) Vortex rings impinging on walls: axisymmetric and three-dimensional simulations. J Fluid Mech 256:615–646

    MATH  Google Scholar 

  • Ponitz B, Sastuba M, Brücker C (2016) 4D visualization study of a vortex ring life cycle using model analyses. J Vis 19:237–259

    Google Scholar 

  • Saffman PG (1970) The velocity of viscous vortex rings. Stud Appl Math XLIX(4):371–380

    MATH  Google Scholar 

  • Schram C, Riethmuller ML (2001) Vortex ring evolution in an impulsively started jet using digital particle image velocimetry and continuous wavelet analysis. Meas Sci Technol 12:1413–1421

    Google Scholar 

  • Shariff K, Leonard A (1992) Vortex rings. Ann Rev Fluid Mech 24:235–279

    MathSciNet  MATH  Google Scholar 

  • Suzuki A, Kumagai I, Nagata Y, Kurita K, Barnouin-Jha OS (2007) Modes of ejecta emplacement at Martian craters from laboratory experiments of an expanding vortex ring interacting with a particle layer. Geophys Res Lett 34:L05203

    Google Scholar 

  • Swearingen JD, Crouch JD, Handler RA (1995) Dynamics and stability of a vortex ring impacting a solid boundary. J Fluid Mech 297:1–28

    MathSciNet  MATH  Google Scholar 

  • Takahashi J, Tasaka Y, Murai Y, Takeda Y, Yanagisawa T (2010) Experimental study of cell transition induced by internal heat sources in a shallow fluid layer. Int J Heat Mass Transf 53:1483–1490

    MATH  Google Scholar 

  • Tung C, Ting L (1967) Motion and decay of a vortex ring. Phys Fluids 10:901–910

    Google Scholar 

  • Turkington B (1989) Vortex rings with swirl: axisymmetric solutions of the Euler equations with nonzero helicity. SIAM J Math Anal 20(1):57–73

    MathSciNet  MATH  Google Scholar 

  • Verzicco R, Orlandi P, Eisenga AHM, van Heijst GJF, Carnevale GF (1996) Dynamics of a vortex ring in a rotating fluid. J Fluid Mech 317:215–239

    Google Scholar 

  • Walker JDA, Smith CR, Cerra AW, Doligalski TL (1987) The impact of a vortex ring on a wall. J Fluid Mech 181:99–140

    Google Scholar 

  • Weigand A, Gharib M (1994) On the decay of a turbulent vortex ring. Phys Fluids 6:3806–3808

    Google Scholar 

  • Widnall SE, Bliss DB, Tsai CY (1974) The instability of short waves on a vortex ring. J Fluid Mech 66:35–47

    MathSciNet  MATH  Google Scholar 

  • Xu Y, He GS, Kulkarni V, Wang JJ (2017) Experimental investigation of influence of Reynolds number on synthetic jet vortex ring impinging onto a solid wall. Exp Fluids 58:6

    Google Scholar 

  • Yamada H, Kohsaka T, Yamabe H, Matsui T (1982) Flowfield produced by a vortex ring near a plane wall. J Phys Soc Jpn 51(5):1663–1670

    Google Scholar 

Download references

Acknowledgements

We acknowledge Mr. Yuichi Nambu and Mr. Yuki Aikawa for their technical supports in measurement instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Oishi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oishi, Y., Murai, Y. & Tasaka, Y. Quantitative visualization of vortex ring structure during wall impingement subject to background rotation. J Vis 22, 867–876 (2019). https://doi.org/10.1007/s12650-019-00575-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-019-00575-4

Keywords

Navigation