Abstract
Suspension injection is a crucial point for suspension plasma spray, an emerging coating process. It must satisfy several requirements such as stability, reproducibility, high yield of suspension particles penetrating the plasma core. Indeed, the particles should follow a proper trajectory inside the plasma in order to be well treated and accelerated. Thus, the quality of the injection has a direct effect on the coating microstructure, therefore on the properties. This study focuses on the three-step characterization of a twin-fluid atomizer, without and within the plasma. While varying gas or suspension flow rates, the spray was firstly observed thanks to a shadowgraphy system. This system uses a short-pulsed diode laser in a back illumination configuration and a robust image processing software, allowing the detection of suspension droplets, even within a high emissive plasma. Secondly, droplet size measurements were performed via laser diffraction. Thirdly, droplet velocities were measured using a particle image velocimetry system. The combination of the results obtained by these techniques helped us to understand how gas and suspension flow rates impact on droplets size and velocity distributions and finally how one could select the best injection conditions. The injector characterization was completed by coating manufacturing and microstructure analysis.
Graphical abstract
Similar content being viewed by others
References
Adrian R-J (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304. doi:10.1146/annurev.fl.23.010191.001401
Bertolissi G, Chazelas C, Bolelli G, Lusvarghi L, Vardelle M, Vardelle A (2012) Engineering the microstructure of solution precursor plasma-sprayed coatings. J Therm Spray Technol 21:1148–1162. doi:10.1007/s11666-012-9789-3
Coudert J-F, Rat V (2010) The role of torch instabilities in the suspension plasma spraying process. Surf Coat Technol 205:949–953. doi:10.1016/j.surfcoat.2010.08.100
Delbos C (2004) Contribution à la compréhension de l’injection par voie liquide de céramiques (Y.S.Z., Pérovskite,…) ou métaux (Ni,…) dans un plasma d’arc soufflé afin d’élaborer des dépôts finement structurés pour S.O.F.Cs. Dissertation, Université de Limoges
Delbos C, Fazilleau J, Rat V, Coudert J, Fauchais P, Pateyron B (2006) Phenomena involved in suspension plasma spraying part 2: zirconia particle treatment and coating formation. Plasma Chem Plasma Process 26:393–414. doi:10.1007/s11090-006-9020-8
Etchart-Salas R (2007) Projection par plasma d’arc de particules submicroniques en suspension. Approche expérimentale et analytique des phénomènes impliqués dans la reproductibilité et la qualité des dépôts. Dissertation, Université de Limoges
Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37:86–108. doi:10.1109/TPS.2005.845094
Fauchais P, Montavon G (2009) Latest developments in suspension and liquid precursor thermal spraying. J Therm Spray Technol 19:226–239. doi:10.1007/s11666-009-9446-7
Fauchais P, Etchart-Salas R, Rat V, Coudert J, Caron N, Wittmann-Ténèze K (2008) Parameters controlling liquid plasma spraying: solutions, sols, or suspensions. J Therm Spray Technol 17:31–59. doi:10.1007/s11666-007-9152-2
Fazilleau J (2003) Contribution à la compréhension des phénomènes impliqués dans la réalisation de dépôts finement structurés d’oxydes par projection de suspensions par plasma. Dissertation, Université de Limoges
Fazilleau J, Delbos C, Rat V, Coudert J, Fauchais P, Pateyron B (2006) Phenomena involved in suspension plasma spraying part 1: suspension injection and behavior. Plasma Chem Plasma Process 26:371–391. doi:10.1007/s11090-006-9019-1
Gell M (1995) Application opportunities for nanostructured materials and coatings. Mater Sci and Eng A 204:246–251. doi:10.1016/0921-5093(95)09969-7
Heimann R (2008) Plasma spray coating: principles and applications. Wiley, Weinheim
Karthikeyan J, Berndt C, Tikkanen J, Reddy S, Herman H (1997) Plasma spray synthesis of nanomaterial powders and deposits. Mater Sci Eng, A 238:275–286. doi:10.1016/S0921-5093(96)10568-2
Kassner H, Siegert R, Hathiramani D, Vassen R, Stoever D (2007) Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings. J Therm Spray Technol 17:115–123. doi:10.1007/s11666-007-9144-2
Khatim O, Planche M-P, Dembinski L, Bailly Y, Coddet C (2010) Processing parameter effect on the splat diameters of the droplets produced by liquid metal atomization using De Laval nozzle. Surf Coat Technol 205:1171–1175. doi:10.1016/j.surfcoat.2010.08.032
Lefebvre AH (1989) Atomizations and sprays. CRC Press, London
Marchand O (2010) Etude du procédé de projection plasma de suspensions pour l’élaboration du coeur de pile à combustible SOFC. Dissertation, Université de Franche-Comté, Université de Technologie de Belfort-Montbéliard
Marchand O, Girardot L, Planche M-P, Bertrand P, Bailly Y, Bertrand G (2011) An insight into suspension plasma spray: injection of the suspension and its interaction with the plasma flow. J Therm Spray Technol 20:1310–1320. doi:10.1007/s11666-011-9682-5
Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8:1406–1416. doi:10.1088/0957-0233/8/12/005
Ozturk A, Cetegen B (2005) Experiments on ceramic formation from liquid precursor spray axially injected into an oxy-acetylene flame. Acta Mater 53:5203–5211. doi:10.1016/j.actamat.2005.08.001
Pawlowski L (1995) The science and engineering of thermal spray coatings. Wiley, Chichester
Pawlowski L (2009) Suspension and solution thermal spray coatings. Surf Coat Technol 203:2807–2829. doi:10.1016/j.surfcoat.2009.03.005
Pilch M, Erdman CA (1987) Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int J Multiph Flow 13:741–757. doi:10.1016/0301-9322(87)90063-2
Planche M-P, Bolot R, Coddet C (2003) In-flight characteristics of plasma sprayed alumina particles: measurements, modeling, and comparison. J Therm Spray Technol 12:101–111. doi:10.1361/105996303770348555
Raffel M, Willert C-E, Kompenhans J (1998) Particle image velocimetry—a practical guide. Springer, Berlin
Rampon R, Filiatre C, Bertrand G (2007) Suspension plasma spraying of YPSZ coatings: suspension atomization and injection. J Therm Spray Technol 17:105–114. doi:10.1007/s11666-007-9143-3
Soysal D, Ansar A (2013) A new approach to understand liquid injection into atmospheric plasma jets. Surf Coat Technol 220:187–190. doi:10.1016/j.surfcoat.2012.12.009
Toma F-L, Berger L, Jacquet D, Wicky D, Villaluenga I, de Miguel Y, Lindeløv J (2009) Comparative study on the photocatalytic behaviour of titanium oxide thermal sprayed coatings from powders and suspensions. Surf Coat Technol 203:2150–2156. doi:10.1016/j.surfcoat.2008.10.022
Vert R, Chicot D, Dublanche-Tixier C, Meillot E, Vardelle A, Mariaux G (2010) Adhesion of YSZ suspension plasma-sprayed coating on smooth and thin substrates. Surf Coat Technol 205:999–1003. doi:10.1016/j.surfcoat.2010.07.090
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aubignat, E., Planche, M.P., Billieres, D. et al. Optimization of the injection with a twin-fluid atomizer for suspension plasma spray process using three non-intrusive diagnostic tools. J Vis 19, 21–36 (2016). https://doi.org/10.1007/s12650-015-0281-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12650-015-0281-2