[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Peripheral ProBDNF Delivered by an AAV Vector to the Muscle Triggers Depression-Like Behaviours in Mice

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Major depression is a leading cause of morbidity and disease burden in modern society. Current drug treatment is only effective in a fraction of patients as underlying mechanisms of depression are not fully understood. ProBDNF, a precursor of brain-derived neurotrophic factor (BDNF), and its receptor p75NTR are highly upregulated in patients with major depression and in animal models of depression induced by chronic stress. Here, we hypothesise that proBDNF may be a pathogenic factor triggering depression. C57BL/6 mice were injected in the bilateral gluteus maximus muscle with AAV-proBDNF or AAV-EGFP. Four weeks after the injection, AAV-proBDNF injected animals developed depression-like behaviours, which were evident for 4–8 weeks and then returned to the control level after 12 weeks. In the second experiment, mice were divided into three groups; one group was treated with sheep anti-proBDNF antibody after AAV-proBDNF injection whereas the other two groups received PBS injection after the AAV-proBDNF or AAV-EGFP delivery. The group that was injected with AAV-proBDNF showed a time-dependent increase in immobility time in the tail suspension test and forced swim test, reduced sucrose consumption and decreased grooming time after sucrose spraying. Treatment with sheep anti-proBDNF antibody alleviated the depressive-like symptoms. Peripheral AAV-proBDNF delivery also resulted in a reduction of density and length of dendritic spines in the dentate gyrus and amygdala. Thus, we conclude that peripheral proBDNF is a primary pathogenic factor triggering depression-like behavioural changes in mice likely by reducing dendritic spine plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abelaira HM, Reus GZ, Quevedo J (2013) Animal models as tools to study the pathophysiology of depression. Rev Bras Psiquiatr 35:S112–S120

    PubMed  Google Scholar 

  • AbuHasan Q, Siddiqui W (2020) Neuroanatomy, amygdala. In: StatPearls. Treasure Island (FL)

  • Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T (2007) Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 85:525–535

    CAS  PubMed  Google Scholar 

  • Bai YY, Ruan CS, Yang CR, Li JY, Kang ZL, Zhou L, Liu D, Zeng YQ, Wang TH, Tian CF, Liao H, Bobrovskaya L, Zhou XF (2016) ProBDNF signaling regulates depression-like behaviors in rodents under chronic stress. Neuropsychopharmacology 41:2882–2892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castrén E, Kojima M (2017) Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis 97:119–126

    PubMed  Google Scholar 

  • Chiaruttini C, Vicario A, Li Z, Baj G, Braiuca P, Wu Y, Lee FS, Gardossi L, Baraban JM, Tongiorgi E (2009) Dendritic trafficking of BDNF mRNA is mediated by translin and blocked by the G196A (Val66Met) mutation. Proc Natl Acad Sci U S A 106:16481–16486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa RO, Perestrelo T, Almeida RD (2018) PROneurotrophins and CONSequences. Mol Neurobiol 55:2934–2951

    CAS  PubMed  Google Scholar 

  • Deyama S, Duman RS (2020) Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol Biochem Behav 188:172837

    PubMed  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    CAS  PubMed  Google Scholar 

  • Fan YJ, Wu LL, Li HY, Wang YJ, Zhou XF (2008) Differential effects of pro-BDNF on sensory neurons after sciatic nerve transection in neonatal rats. Eur J Neurosci 27:2380–2390

    PubMed  Google Scholar 

  • Francija E, Petrovic Z, Brkic Z, Mitic M, Radulovic J, Adzic M (2019) Disruption of the NMDA receptor GluN2A subunit abolishes inflammation-induced depression. Behav Brain Res 359:550–559

    CAS  PubMed  Google Scholar 

  • Hashimoto K (2010) Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci 64:341–357

    CAS  PubMed  Google Scholar 

  • Hempstead BL (2015) Brain-derived neurotrophic factor: three ligands, many actions. Trans Am Clin Climatol Assoc 126:9–19

    PubMed  PubMed Central  Google Scholar 

  • Idell RD, Florova G, Komissarov AA, Shetty S, Girard RB, Idell S (2017) The fibrinolytic system: a new target for treatment of depression with psychedelics. Med Hypotheses 100:46–53

    CAS  PubMed  Google Scholar 

  • Jiang H, Chen S, Li C, Lu N, Yue Y, Yin Y, Zhang Y, Zhi X, Zhang D, Yuan Y (2017) The serum protein levels of the tPA-BDNF pathway are implicated in depression and antidepressant treatment. Transl Psychiatry 7:e1079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao SS, Shen LL, Zhu C, Bu XL, Liu YH, Liu CH, Yao XQ, Zhang LL, Zhou HD, Walker DG, Tan J, Gotz J, Zhou XF, Wang YJ (2016) Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Transl Psychiatry 6:e907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston KM, Powell LC, Anderson IM, Szabo S, Cline S (2019) The burden of treatment-resistant depression: a systematic review of the economic and quality of life literature. J Affect Disord 242:195–210

    PubMed  Google Scholar 

  • Kattenhorn LM, Tipper CH, Stoica L, Geraghty DS, Wright TL, Clark KR, Wadsworth SC (2016) Adeno-associated virus gene therapy for liver disease. Hum Gene Ther 27:947–961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennis M, Gerritsen L, van Dalen M, Williams A, Cuijpers P, Bockting C (2020) Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol Psychiatry 25:321–338

    PubMed  Google Scholar 

  • Kronenberg G, Kirste I, Inta D, Chourbaji S, Heuser I, Endres M, Gass P (2009) Reduced hippocampal neurogenesis in the GR(+/−) genetic mouse model of depression. Eur Arch Psychiatry Clin Neurosci 259:499–504

    PubMed  PubMed Central  Google Scholar 

  • Leal G, Bramham CR, Duarte CB (2017) BDNF and hippocampal synaptic plasticity. Vitam Horm 104:153–195

    CAS  PubMed  Google Scholar 

  • Li JY, Liu J, Manaph NPA, Bobrovskaya L, Zhou XF (2017) ProBDNF inhibits proliferation, migration and differentiation of mouse neural stem cells. Brain Res 1668:46–55

    CAS  PubMed  Google Scholar 

  • Lim Y, Zhong J-H, Zhou X-F (2015) Development of mature BDNF-specific sandwich ELISA. J Neurochem 134:75–85

    CAS  PubMed  Google Scholar 

  • Liu M-Y, Yin C-Y, Zhu L-J, Zhu X-H, Xu C, Luo C-X, Chen H, Zhu D-Y, Zhou Q-G (2018) Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc 13:1686–1698

    CAS  PubMed  Google Scholar 

  • Luo C, Zhong XL, Zhou FH, Li JY, Zhou P, Xu JM, Song B, Li CQ, Zhou XF, Dai RP (2016) Peripheral brain derived neurotrophic factor precursor regulates pain as an inflammatory mediator. Sci Rep 6:27171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malhi GS, Mann JJ (2018) Depression. Lancet 392:2299–2312

    PubMed  Google Scholar 

  • Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ (1998) Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology 37:1553–1561

    CAS  PubMed  Google Scholar 

  • Pitsillou E, Bresnehan SM, Kagarakis EA, Wijoyo SJ, Liang J, Hung A, Karagiannis TC (2020) The cellular and molecular basis of major depressive disorder: towards a unified model for understanding clinical depression. Mol Biol Rep 47:753–770

    CAS  PubMed  Google Scholar 

  • Planchez B, Surget A, Belzung C (2020) Adult hippocampal neurogenesis and antidepressants effects. Curr Opin Pharmacol 50:88–95

    CAS  PubMed  Google Scholar 

  • Qiao H, An SC, Xu C, Ma XM (2017) Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res 1663:29–37

    CAS  PubMed  Google Scholar 

  • Seibenhener ML, Wooten MC (2015) Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp 96:52434

    Google Scholar 

  • Shen WY, Luo C, Reinaldo Hurtado P, Hurtado-Perez E, Luo RY, Hu ZL, Li H, Xu JM, Zhou XF, Dai RP (2020) The regulatory role of ProBDNF in monocyte function: implications in Stanford type-A aortic dissection disease. FASEB J 34:2541–2553

    CAS  PubMed  Google Scholar 

  • Sun Y, Lim Y, Li F, Liu S, Lu JJ, Haberberger R, Zhong JH, Zhou XF (2012) ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS One 7:e35883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk T, Palm K, Metsis M, Reintam T, Paalme V, Saarma M, Persson H (1993) Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron 10:475–489

    CAS  PubMed  Google Scholar 

  • Umschweif G, Greengard P, Sagi Y (2019) The dentate gyrus in depression. Eur J Neurosci

  • von Bohlen Und Halbach O, von Bohlen Und Halbach V (2018) BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 373:729–741

    Google Scholar 

  • Wang H, Wu LL, Song XY, Luo XG, Zhong JH, Rush RA, Zhou XF (2006) Axonal transport of BDNF precursor in primary sensory neurons. Eur J Neurosci 24:2444–2452

    PubMed  Google Scholar 

  • Wang YJ, Gao CY, Yang M, Liu XH, Sun Y, Pollard A, Dong XY, Wu XB, Zhong JH, Zhou HD, Zhou XF (2010) Intramuscular delivery of a single chain antibody gene prevents brain Abeta deposition and cognitive impairment in a mouse model of Alzheimer’s disease. Brain Behav Immun 24:1281–1293

    CAS  PubMed  Google Scholar 

  • Wang QH, Wang YR, Zhang T, Jiao SS, Liu YH, Zeng F, Li J, Yao XQ, Zhou HD, Zhou XF, Wang YJ (2016) Intramuscular delivery of p75NTR ectodomain by an AAV vector attenuates cognitive deficits and Alzheimer’s disease-like pathologies in APP/PS1 transgenic mice. J Neurochem 138:163–173

    CAS  PubMed  Google Scholar 

  • Wang Z, Wu JL, Zhong F, Liu Y, Yu YQ, Sun JJ, Wang S, Li H, Zhou XF, Hu ZL, Dai RP (2019) Upregulation of proBDNF in the mesenteric lymph nodes in septic mice. Neurotox Res 36:540–550

    CAS  PubMed  Google Scholar 

  • Wong I, Liao H, Bai X, Zaknic A, Zhong J, Guan Y, Li HY, Wang YJ, Zhou XF (2010) ProBDNF inhibits infiltration of ED1+ macrophages after spinal cord injury. Brain Behav Immun 24:585–597

    CAS  PubMed  Google Scholar 

  • Wu LL, Fan Y, Li S, Li XJ, Zhou XF (2010) Huntingtin-associated protein-1 interacts with pro-brain-derived neurotrophic factor and mediates its transport and release. J Biol Chem 285:5614–5623

    CAS  PubMed  Google Scholar 

  • Xiong J, Zhou L, Yang M, Lim Y, Zhu YH, Fu DL, Li ZW, Zhong JH, Xiao ZC, Zhou XF (2013) ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro-oncology 15:990–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZQ, Sun Y, Li HY, Lim Y, Zhong JH, Zhou XF (2011) Endogenous proBDNF is a negative regulator of migration of cerebellar granule cells in neonatal mice. Eur J Neurosci 33:1376–1384

    PubMed  Google Scholar 

  • Yan HC, Cao X, Das M, Zhu XH, Gao TM (2010) Behavioral animal models of depression. Neurosci Bull 26:327–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Harte-Hargrove LC, Siao CJ, Marinic T, Clarke R, Ma Q, Jing D, Lafrancois JJ, Bath KG, Mark W, Ballon D, Lee FS, Scharfman HE, Hempstead BL (2014) proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep 7:796–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CR, Bai YY, Ruan CS, Zhou FH, Li F, Li CQ, Zhou XF (2016) Injection of anti-proBDNF in anterior cingulate cortex (ACC) reverses chronic stress-induced adverse mood behaviors in mice. Neurotox Res 31(2):298–308

    PubMed  Google Scholar 

  • Yang CR, Bai YY, Ruan CS, Zhou FH, Li F, Li CQ, Zhou XF (2017) Injection of anti-proBDNF in anterior cingulate cortex (ACC) reverses chronic stress-induced adverse mood behaviors in mice. Neurotox Res 31:298–308

    CAS  PubMed  Google Scholar 

  • Yang CR, Zhang XY, Liu Y, Du JY, Liang R, Yu M, Zhang FQ, Mu XF, Li F, Zhou L, Zhou FH, Meng FJ, Wang S, Ming D, Zhou XF (2019) Antidepressant drugs correct the imbalance between probdnf/p75ntr/sortilin and mature bdnf/trkb in the brain of mice with chronic stress. Neurotox Res 37:1–12

    CAS  Google Scholar 

  • Yang CR, Zhang XY, Liu Y, Du JY, Liang R, Yu M, Zhang FQ, Mu XF, Li F, Zhou L, Zhou FH, Meng FJ, Wang S, Ming D, Zhou XF (2020) Antidepressant drugs correct the imbalance between proBDNF/p75NTR/sortilin and mature BDNF/TrkB in the brain of mice with chronic stress. Neurotox Res 37:171–182

    PubMed  Google Scholar 

  • Zhong F, Liu L, Wei JL, Hu ZL, Li L, Wang S, Xu JM, Zhou XF, Li CQ, Yang ZY, Dai RP (2019) Brain-derived neurotrophic factor precursor in the hippocampus regulates both depressive and anxiety-like behaviors in rats. Front Psychiatry 10:1–11

    Google Scholar 

  • Zhou XF, Song XY, Zhong JH, Barati S, Zhou FH, Johnson SM (2004) Distribution and localization of pro-brain-derived neurotrophic factor-like immunoreactivity in the peripheral and central nervous system of the adult rat. J Neurochem 91:704–715

    CAS  PubMed  Google Scholar 

  • Zhou L, Xiong J, Lim Y, Ruan Y, Huang C, Zhu Y, Zhong J-H, Xiao Z, Zhou X-F (2013) Upregulation of blood proBDNF and its receptors in major depression. J Affect Disord 150:776–784

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by UniSA Postgraduate Scholarship to Liy.L., NHMRC Fellowship grant to X.F.Z. and a collaboration grant from Shanghai Yile Biotech. The authors wish to thank Moses Chao from New York University for the gift of p75NTR antibodies.

Author information

Authors and Affiliations

Authors

Contributions

L.B. and X.F.Z. contributed to the study conception and design. Material preparation, data collection and analysis were performed by Liy.L., S.K., Lin.L. and M.A.-H. The first draft of the manuscript was written by Liy.L. and all authors provided their comments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to L. Bobrovskaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L.Y., Kelliny, S., Liu, L.C. et al. Peripheral ProBDNF Delivered by an AAV Vector to the Muscle Triggers Depression-Like Behaviours in Mice. Neurotox Res 38, 626–639 (2020). https://doi.org/10.1007/s12640-020-00256-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00256-3

Keywords