Abstract
Hierarchical porous carbon (HPC) materials contain organized pores having different scales of diameters. These materials exhibit surprisingly high performance in various applications due to the functional combination of hierarchical pores. This paper reviews the preparation of HPC from waste and biomass, and their potential applications. Biomass with naturally organized hierarchical structure, such as wood, grass and nut shell, have been widely used as raw materials, from which, hierarchical porosity can be formed through simple pyrolysis-activation. Influences of the types and dosages of activating agent, as well as the pyrolysis/activation conditions on the specific surface area, pore volume and hierarchical porous structure of the structured biomass-based HPC are discussed. For non-structured raw materials such as sucrose, pitch and plastics, novel technologies have been developed to prepare HPC; these include hard-/soft-template methods, hydrothermal carbonization, chemical vapor deposition, spray pyrolysis and autogenic pressure carbonization. The approaches to design or control the structures and properties of HPC made from non-structured materials are also reviewed. Moreover, advanced applications of HPC in energy storage, deionization, adsorption and catalysis are summarized.
Graphic Abstract
Similar content being viewed by others
References
Çeçen, F., Aktas, Ö.: Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment. Wiley, New York (2011)
Borghei, M., Lehtonen, J., Liu, L., Rojas, O.J.: Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 30(24), 1703691 (2018). https://doi.org/10.1002/adma.201703691
Roberts, A.D., Li, X., Zhang, H.: Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43(13), 4341–4356 (2014). https://doi.org/10.1039/c4cs00071d
Tripathi, P.K., Gan, L., Liu, M., Rao, N.N.: Mesoporous carbon nanomaterials as environmental adsorbents. J. Nanosci. Nanotechnol. 14(2), 1823–1837 (2014). https://doi.org/10.1166/jnn.2014.8763
Gamby, J., Taberna, P.L., Simon, P., Fauvarque, J.F., Chesneau, M.: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101(1), 109–116 (2001). https://doi.org/10.1016/S0378-7753(01)00707-8
Ghosh, A., Lee, Y.H.: Carbon-based electrochemical capacitors. Chemsuschem 5(3), 480–499 (2012). https://doi.org/10.1002/cssc.201100645
Zhang, L., Zhao, X.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). https://doi.org/10.1039/B813846J
Jiang, W., Pan, J., Wang, J., Cai, J., Gang, X., Liu, X., Sun, Y.: A coin like porous carbon derived from Al-MOF with enhanced hierarchical structure for fast charging and super long cycle energy storage. Carbon 154, 428–438 (2019). https://doi.org/10.1016/j.carbon.2019.08.035
Ghimbeu, C.M., Luchnikov, V.A.: Hierarchical porous nitrogen-doped carbon beads derived from biosourced chitosan polymer. Microporous Mesoporous Mater. 263, 42–52 (2018). https://doi.org/10.1016/j.micromeso.2017.12.001
Gu, N., Liu, J., Ye, J., Chang, N., Li, Y.-Y.: Bioenergy, ammonia and humic substances recovery from municipal solid waste leachate: A review and process integration. Biores. Technol. 293, 122159 (2019). https://doi.org/10.1016/j.biortech.2019.122159
Cheng, Z., Zhu, S., Chen, X., Wang, L., Lou, Z., Feng, L.: Variations and environmental impacts of odor emissions along the waste stream. J. Hazard. Mater. (2019). https://doi.org/10.1016/j.jhazmat.2019.120912
Lonati, G., Cambiaghi, A., Cernuschi, S.: The actual impact of waste-to-energy plant emissions on air quality: a case study from northern Italy. Detritus 6, 77–84 (2019). https://doi.org/10.31025/2611-4135/2019.13817
Baskar, C., Baskar, S., Dhillon, R.S.: Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science. Springer Science & Business Media, New York (2012)
Gonzalez, J.F., Roman, S., Gonzalez-Garcia, C.M., Valente Nabais, J.M., Luis Ortiz, A.: Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation. Ind. Eng. Chem. Res. 48(16), 7474–7481 (2009). https://doi.org/10.1021/ie801848x
Wei, H., Deng, S., Hu, B., Chen, Z., Wang, B., Huang, J., Yu, G.: Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores. Chemsuschem 5(12), 2354–2360 (2012). https://doi.org/10.1002/cssc.201200570
Fratzl, P., Weinkamer, R.: Nature’s hierarchical materials. Prog. Mater Sci. 52(8), 1263–1334 (2007). https://doi.org/10.1016/j.pmatsci.2007.06.001
Thanh-Dinh, N., Shopsowitz, K.E., MacLachlan, M.J.: Mesoporous nitrogen-doped carbon from nanocrystalline chitin assemblies. J. Mater. Chem. A 2(16), 5915–5921 (2014). https://doi.org/10.1039/c3ta15255c
Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., Morgan, T.J.: An overview of the organic and inorganic phase composition of biomass. Fuel 94(1), 1–33 (2012). https://doi.org/10.1016/j.fuel.2011.09.030
Liu, W.-J., Jiang, H., Yu, H.-Q.: Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev. 115(22), 12251–12285 (2015). https://doi.org/10.1021/acs.chemrev.5b00195
Babu, B.V.: Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod. Bioref. Biofpr 2(5), 393–414 (2008). https://doi.org/10.1002/bbb.92
Li, S., Lyons-Hart, J., Banyasz, J., Shafer, K.: Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80(12), 1809–1817 (2001). https://doi.org/10.1016/s0016-2361(01)00064-3
Shen, D.K., Gu, S., Bridgwater, A.V.: Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR. J. Anal. Appl. Pyrolysis 87(2), 199–206 (2010). https://doi.org/10.1016/j.jaap.2009.12.001
Chu, S., Subrahmanyam, A.V., Huber, G.W.: The pyrolysis chemistry of a beta-O-4 type oligomeric lignin model compound. Green Chem. 15(1), 125–136 (2013). https://doi.org/10.1039/c2gc36332a
Antal, M.J., Gronli, M.: The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42(8), 1619–1640 (2003). https://doi.org/10.1021/ie0207919
Zhao, L., Cao, X., Masek, O., Zimmerman, A.: Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 256, 1–9 (2013). https://doi.org/10.1016/j.jhazmat.2013.04.015
Yuan, J.-H., Xu, R.-K., Zhang, H.: The forms of alkalis in the biochar produced from crop residues at different temperatures. Biores. Technol. 102(3), 3488–3497 (2011). https://doi.org/10.1016/j.biortech.2010.11.018
Keown, D.M., Hayashi, J.-I., Li, C.-Z.: Effects of volatile-char interactions on the volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass. Fuel 87(7), 1187–1194 (2008). https://doi.org/10.1016/j.fuel.2007.05.056
Nowakowski, D.J., Jones, J.M., Brydson, R.M.D., Ross, A.B.: Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel 86(15), 2389–2402 (2007). https://doi.org/10.1016/j.fuel.2007.01.026
Khiari, B., Ghouma, I., Ibn Ferjani, A., Azzaz, A.A., Jellali, S., Limousy, L., Jeguirim, M.: Kenaf stems: thermal characterization and conversion for biofuel and biochar production. Fuel (2020). https://doi.org/10.1016/j.fuel.2019.116654
Angin, D.: Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Biores. Technol. 128, 593–597 (2013). https://doi.org/10.1016/j.biortech.2012.10.150
Sun, J., He, F., Pan, Y., Zhang, Z.: Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agric. Scand. Sect. B 67(1), 12–22 (2017). https://doi.org/10.1080/09064710.2016.1214745
Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M., Usman, A.R.A.: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Biores. Technol. 131, 374–379 (2013). https://doi.org/10.1016/j.biortech.2012.12.165
Uchimiya, M., Wartelle, L.H., Klasson, K.T., Fortier, C.A., Lima, I.M.: Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J. Agric. Food Chem. 59(6), 2501–2510 (2011). https://doi.org/10.1021/jf104206c
Wang, J., Kaskel, S.: KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22(45), 23710–23725 (2012). https://doi.org/10.1039/C2JM34066F
Jagtoyen, M., Derbyshire, F.: Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36(7–8), 1085–1097 (1998). https://doi.org/10.1016/s0008-6223(98)00082-7
Chang, B., Guo, Y., Li, Y., Yin, H., Zhang, S., Yang, B., Dong, X.: Graphitized hierarchical porous carbon nanospheres: simultaneous activation/graphitization and superior supercapacitance performance. J. Mater. Chem. A 3(18), 9565–9577 (2015). https://doi.org/10.1039/C5TA00867K
Gong, Y., Li, D., Luo, C., Fu, Q., Pan, C.: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19(17), 4132–4140 (2017). https://doi.org/10.1039/C7GC01681F
Huang, D.C., Liu, Q.L., Zhang, W., Ding, J., Gu, J.J., Zhu, S.M., Guo, Q.X., Zhang, D.: Preparation of high-surface-area activated carbon from Zizania latifolia leaves by one-step activation with K2CO3/rarefied air. J. Mater. Sci. 46(15), 5064–5070 (2011). https://doi.org/10.1007/s10853-011-5429-4
Xiang, X., Liu, E., Li, L., Yang, Y., Shen, H., Huang, Z., Tian, Y.: Activated carbon prepared from polyaniline base by K 2CO 3 activation for application in supercapacitor electrodes. J. Solid State Electrochem. 15(3), 579–585 (2011). https://doi.org/10.1007/s10008-010-1130-9
Li, Y.-T., Pi, Y.-T., Lu, L.-M., Xu, S.-H., Ren, T.-Z.: Hierarchical porous active carbon from fallen leaves by synergy of K2CO3 and their supercapacitor performance. J. Power Sources 299, 519–528 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.039
Qiu, D., Guo, N., Gao, A., Zheng, L., Xu, W., Li, M., Wang, F., Yang, R.: Preparation of oxygen-enriched hierarchically porous carbon by KMnO4 one-pot oxidation and activation: mechanism and capacitive energy storage. Electrochim. Acta 294, 398–405 (2019). https://doi.org/10.1016/j.electacta.2018.10.049
Qiu, D., Kang, C., Gao, A., Xie, Z., Li, Y., Li, M., Wang, F., Yang, R.: Sustainable low-temperature activation to customize pore structure and heteroatoms of biomass-derived carbon enabling unprecedented durable supercapacitors. ACS Sustain. Chem. Eng. 7(17), 14629–14638 (2019). https://doi.org/10.1021/acssuschemeng.9b02425
Li, Z., An, Y., Hu, Z., An, N., Zhang, Y., Guo, B., Zhang, Z., Yang, Y., Wu, H.: Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor. J. Mater. Chem. A 4(27), 10618–10626 (2016). https://doi.org/10.1039/c6ta03358j
Kwiatkowski, M., Broniek, E.: An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Colloids Surf. A 529, 443–453 (2017). https://doi.org/10.1016/j.colsurfa.2017.06.028
Kim, D.W., Kil, H.S., Nakabayashi, K., Yoon, S.H., Jin, M.: Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model. Carbon 114, 98–105 (2017). https://doi.org/10.1016/j.carbon.2016.11.082
Yakaboylu, G.A., Yumak, T., Jiang, C., Zondlo, J.W., Wang, J., Sabolsky, E.M.: Preparation of highly porous carbon through slow oxidative torrefaction, pyrolysis, and chemical activation of lignocellulosic biomass for high-performance supercapacitors. Energy Fuels 33(9), 9309–9329 (2019). https://doi.org/10.1021/acs.energyfuels.9b01260
Guo, N., Li, M., Sun, X., Wang, F., Yang, R.: Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chem. 19(11), 2595–2602 (2017). https://doi.org/10.1039/C7GC00506G
Liu, Y., Huang, B., Lin, X., Xie, Z.: Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach. J. Mater. Chem. A 5(25), 13009–13018 (2017). https://doi.org/10.1039/C7TA03639F
Yin, L., Chen, Y., Li, D., Zhao, X., Hou, B., Cao, B.: 3-Dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapacitors. Mater. Des. 111, 44–50 (2016). https://doi.org/10.1016/j.matdes.2016.08.070
Konikkara, N., Kennedy, L.J., Vijaya, J.J.: Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications. J. Hazard. Mater. 318, 173–185 (2016). https://doi.org/10.1016/j.jhazmat.2016.06.037
Zhou, P., Wan, J., Wang, X., Chen, J., Gong, Y., Xu, K.: Three-dimensional hierarchical porous carbon cathode derived from waste tea leaves for the electrocatalytic degradation of phenol. Langmuir 35(40), 12914–12926 (2019). https://doi.org/10.1021/acs.langmuir.9b02017
Dinh Viet, C., Liu, N.-L., Viet Anh, N., Hou, C.-H.: Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal. Sci. Total Environ. 692, 844–853 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.125
Yang, X., Li, C., Chen, Y.: Hierarchical porous carbon with ultrahigh surface area from corn leaf for high-performance supercapacitors application. J. Phys. D-Appl. Phys. 50(5), 055501 (2017). https://doi.org/10.1088/1361-6463/50/5/055501
Chang, B., Guo, Y., Li, Y., Yang, B.: Hierarchical porous carbon derived from recycled waste filter paper as high-performance supercapacitor electrodes. RSC Adv. 5(88), 72019–72027 (2015). https://doi.org/10.1039/C5RA12651G
Vijayakumar, M., Santhosh, R., Adduru, J., Rao, T.N., Karthik, M.: Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading. Carbon 140, 465–476 (2018). https://doi.org/10.1016/j.carbon.2018.08.052
Xie, L., Sun, G., Su, F., Guo, X., Kong, Q., Li, X., Huang, X., Wan, L., Song, W., Li, K., Lv, C., Chen, C.-M.: Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 4(5), 1637–1646 (2016). https://doi.org/10.1039/c5ta09043a
Zhou, X., Chen, F., Bai, T., Long, B., Liao, Q., Ren, Y., Yang, J.: Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries. Green Chem. 18(7), 2078–2088 (2016). https://doi.org/10.1039/C5GC02122G
Xia, J., Zhang, N., Chong, S., Li, D., Chen, Y., Sun, C.: Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor. Green Chem. 20, 694–700 (2018). https://doi.org/10.1039/C7GC03426A
Qian, W., Sun, F., Xu, Y., Qiu, L., Liu, C., Wang, S., Yan, F.: Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 7(1), 379–386 (2014). https://doi.org/10.1039/c3ee43111h
Luan, Y., Wang, L., Guo, S., Jiang, B., Zhao, D., Yan, H., Tian, C., Fu, H.: A hierarchical porous carbon material from a loofah sponge network for high performance supercapacitors. RSC Adv. 5(53), 42430–42437 (2015). https://doi.org/10.1039/C5RA05688H
Ba, H., Wang, W., Pronkin, S., Romero, T., Baaziz, W., Lam, N.-D., Chu, W., Ersen, O., Cuong, P.-H.: Biosourced foam-like activated carbon materials as high-performance supercapacitors. Adv. Sustain. Syst. 2(2), 1700123 (2018). https://doi.org/10.1002/adsu.201700123
Duan, B., Gao, X., Yao, X., Fang, Y., Huang, L., Zhou, J., Zhang, L.: Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27, 482–491 (2016). https://doi.org/10.1016/j.nanoen.2016.07.034
Li, Z., Zhang, L., Amirkhiz, B.S., Tan, X., Xu, Z., Wang, H., Olsen, B.C., Holt, C.M.B., Mitlin, D.: Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2(4), 431–437 (2012). https://doi.org/10.1002/aenm.201100548
Bai, Q., Xiong, Q., Li, C., Shen, Y., Uyama, H.: Hierarchical porous carbons from poly(methyl methacrylate)/bacterial cellulose composite monolith for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 5(10), 9390–9401 (2017). https://doi.org/10.1021/acssuschemeng.7b02488
Ma, Y., You, S., Ling, B., Xing, Z., Chen, H., Dai, Y., Zhang, C., Ren, N., Zou, J.: Biomass pectin-derived N, S-enriched carbon with hierarchical porous structure as a metal-free catalyst for enhancing bio-electricity generation. Int. J. Hydrogen Energy 44(31), 16624–16638 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.158
Castro-Muniz, A., Lorenzo-Fierro, S., Martinez-Alonso, A., Tascon, J.M.D., Fierro, V., Suarez-Garcia, F., Paredes, J.I.: Ordered mesoporous carbons obtained from low-value coal tar products for electrochemical energy storage and water remediation. Fuel Process. Technol. 196, 106152 (2019). https://doi.org/10.1016/j.fuproc.2019.106152
Kim, M.-H., Kim, K.-B., Park, S.-M., Roh, K.C.: Hierarchically structured activated carbon for ultracapacitors. Sci. Rep. 6, 21182 (2016). https://doi.org/10.1038/srep21182
Yu, S., Wang, H., Hu, C., Zhu, Q., Qiao, N., Xu, B.: Facile synthesis of nitrogen-doped, hierarchical porous carbons with a high surface area: The activation effect of a nano-ZnO template. J. Mater. Chem. A 4(42), 16341–16348 (2016). https://doi.org/10.1039/C6TA07047G
Wang, H., Yu, S., Xu, B.: Hierarchical porous carbon materials prepared using nano-ZnO as a template and activation agent for ultrahigh power supercapacitors. Chem. Commun. 52(77), 11512–11515 (2016). https://doi.org/10.1039/C6CC05911B
Geng, W., Ma, F., Wu, G., Song, S., Wan, J., Ma, D.: MgO-templated hierarchical porous carbon sheets derived from coal tar pitch for supercapacitors. Electrochim. Acta 191, 854–863 (2016). https://doi.org/10.1016/j.electacta.2016.01.148
Cao, J.H., Zhu, C.Y., Aoki, Y., Habazaki, H.: Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors. ACS Sustain. Chem. Eng. 6(6), 7292–7303 (2018). https://doi.org/10.1021/acssuschemeng.7b04459
Zhang, W., Lin, H., Lin, Z., Yin, J., Lu, H., Liu, D., Zhao, M.: 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method. Chemsuschem 8(12), 2114–2122 (2015). https://doi.org/10.1002/cssc.201403486
Shao, J.Q., Ma, F.W., Wu, G., Dai, C.C., Geng, W.D., Song, S.J., Wan, J.F.: In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chem. Eng. J. 321, 301–313 (2017). https://doi.org/10.1016/j.cej.2017.03.092
Zhong, X.L., Yuan, W.Y., Kang, Y.J., Xie, J.L., Hu, F.X., Li, C.M.: Biomass-derived hierarchical nanoporous carbon with rich functional groups for direct-electron-transfer-based glucose sensing. Chemelectrochem 3(1), 144–151 (2016). https://doi.org/10.1002/celc.201500351
Du, G., Bian, Q., Zhang, J., Yang, X.: Facile fabrication of hierarchical porous carbon for a high-performance electrochemical capacitor. RSC Adv. 7(73), 46329–46335 (2017). https://doi.org/10.1039/C7RA08402A
Yang, X., Du, G., Zhang, L., Liu, Y.: Preparation of hierarchical porous carbon material derived from starch for high-performance electrochemical capacitor. Mater. Lett. 183, 52–55 (2016). https://doi.org/10.1016/j.matlet.2016.07.069
Wang, B., Li, D., Tang, M., Ma, H., Gui, Y., Tian, X., Quan, F., Song, X., Xia, Y.: Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors. J. Alloy. Compd. 749, 517–522 (2018). https://doi.org/10.1016/j.jallcom.2018.03.223
Estevez, L., Dua, R., Bhandari, N., Ramanujapuram, A., Wang, P., Giannelis, E.P.: A facile approach for the synthesis of monolithic hierarchical porous carbons—high performance materials for amine based CO2 capture and supercapacitor electrode. Energy Environ. Sci. 6(6), 1785–1790 (2013). https://doi.org/10.1039/C3EE40549D
Chen, W., Zhang, H., Huang, Y., Wang, W.: A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. J. Mater. Chem. 20(23), 4773–4775 (2010). https://doi.org/10.1039/c0jm00382d
Liu, H.-J., Wang, X.-M., Cui, W.-J., Dou, Y.-Q., Zhao, D.-Y., Xia, Y.-Y.: Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J. Mater. Chem. 20(20), 4223–4230 (2010). https://doi.org/10.1039/b925776d
Du, W., Wang, X., Zhan, J., Sun, X., Kang, L., Jiang, F., Zhang, X., Shao, Q., Dong, M., Liu, H., Murugadoss, V., Guo, Z.: Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta 296, 907–915 (2019). https://doi.org/10.1016/j.electacta.2018.11.074
Xia, L., Li, X., Wu, Y., Rong, M.: Wood-derived carbons with hierarchical porous structures and monolithic shapes prepared by biological-template and self-assembly strategies. ACS Sustain. Chem. Eng. 3(8), 1724–1731 (2015). https://doi.org/10.1021/acssuschemeng.5b00243
Liu, Y.-N., Wang, H.-T., Kang, X.-H., Wang, Y.-F., Yang, S.-Y., Bian, S.-W.: Cotton fabric and zeolitic imidazolate framework (ZIF-8) derived hierarchical nitrogen-doped porous carbon nanotubes/carbon fabric electrodes for all-solid-state supercapacitors. J. Power Sources 402, 413–421 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.052
Xu, J., Tan, Z.Q., Zeng, W.C., Chen, G.X., Wu, S.L., Zhao, Y., Ni, K., Tao, Z.C., Ikram, M., Ji, H.X., Zhu, Y.W.: A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 28(26), 5222–5228 (2016). https://doi.org/10.1002/adma.201600586
Ding, Y.J., Zhu, J.Q., Wang, C.H., Dai, B., Li, Y.X., Qin, Y.Y., Xu, F., Peng, Q.Y., Yang, Z.Z., Bai, J., Cao, W.X., Yuan, Y., Li, Y.B.: Multifunctional three-dimensional graphene nanoribbons composite sponge. Carbon 104, 133–140 (2016). https://doi.org/10.1016/j.carbon.2016.03.058
Ramakrishnan, P., Shanmugam, S.: Nitrogen-doped porous multi-nano-channel nanocarbons for use in high-performance supercapacitor applications. ACS Sustain. Chem. Eng. 4(4), 2439–2448 (2016). https://doi.org/10.1021/acssuschemeng.6b00289
Liu, K., Chen, Y.-M., Policastro, G.M., Becker, M.L., Zhu, Y.: Three-dimensional bicontinuous graphene monolith from polymer templates. ACS Nano 9(6), 6041–6049 (2015). https://doi.org/10.1021/acsnano.5b01006
Chaudhari, S., Kwon, S.Y., Yu, J.-S.: Ordered multimodal porous carbon with hierarchical nanostructure as high performance electrode material for supercapacitors. RSC Adv. 4(73), 38931–38938 (2014). https://doi.org/10.1039/c4ra06724j
Chen, C., Wang, H., Han, C., Deng, J., Wang, J., Li, M., Tang, M., Jin, H., Wang, Y.: Asymmetric flasklike hollow carbonaceous nanoparticles fabricated by the synergistic interaction between soft template and biomass. J. Am. Chem. Soc. 139(7), 2657–2663 (2017). https://doi.org/10.1021/jacs.6b10841
Nelson, K.M., Mahurin, S.M., Mayes, R.T., Williamson, B., Teague, C.M., Binder, A.J., Baggetto, L., Veith, G.M., Dai, S.: Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors. Micropor. Mesopor. Mater. 222, 94–103 (2016). https://doi.org/10.1016/j.micromeso.2015.09.050
Sun, L., Zhou, Y., Li, L., Zhou, H., Liu, X., Zhang, Q., Gao, B., Meng, Z., Zhou, D., Ma, Y.: Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors. Appl. Surf. Sci. 467, 382–390 (2019). https://doi.org/10.1016/j.apsusc.2018.10.192
Sevilla, M., Antonio Macia-Agullo, J., Fuertes, A.B.: Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenerg. 35(7), 3152–3159 (2011). https://doi.org/10.1016/j.biombioe.2011.04.032
Tekin, K., Karagoz, S., Bektas, S.: A review of hydrothermal biomass processing. Renew. Sustain. Energy Rev. 40, 673–687 (2014). https://doi.org/10.1016/j.rser.2014.07.216
Jain, A., Balasubramanian, R., Srinivasan, M.P.: Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem. Eng. J. 283, 789–805 (2016). https://doi.org/10.1016/j.cej.2015.08.014
Zhang, M., Yang, H., Liu, Y., Sun, X., Zhang, D., Xue, D.: Hydrophobic precipitation of carbonaceous spheres from fructose by a hydrothermal process. Carbon 50(6), 2155–2161 (2012). https://doi.org/10.1016/j.carbon.2012.01.024
Falco, C., Baccile, N., Titirici, M.-M.: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem. 13(11), 3273–3281 (2011). https://doi.org/10.1039/c1gc15742f
Zhong, R.Y., Liao, Y., Shu, R., Ma, L., Sels, B.F.: Vapor-phase assisted hydrothermal carbon from sucrose and its application in acid catalysis. Green Chem. 20(6), 1345–1353 (2018). https://doi.org/10.1039/C7GC02236K
Sevilla, M., Fuertes, A.B.: The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47(9), 2281–2289 (2009). https://doi.org/10.1016/j.carbon.2009.04.026
Simsir, H., Eltugral, N., Karagoz, S.: Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Biores. Technol. 246, 82–87 (2017). https://doi.org/10.1016/j.biortech.2017.07.018
Zhang, X., Wang, Y., Du, Y., Qing, M., Yu, F., Tian, Z.Q., Shen, P.K.: Highly active N, S co-doped hierarchical porous carbon nanospheres from green and template-free method for super capacitors and oxygen reduction reaction. Electrochim. Acta 318, 272–280 (2019). https://doi.org/10.1016/j.electacta.2019.06.081
Yu, J., Luo, J.-D., Zhang, H., Zhang, Z., Wei, J., Yang, Z.: Renewable agaric-based hierarchically porous cocoon-like MnO/Carbon composites enable high-energy and high-rate Li-ion batteries. Electrochim. Acta 322, 134757 (2019). https://doi.org/10.1016/j.electacta.2019.134757
Guo, M., Guo, J., Tong, F., Jia, D., Jia, W., Wu, J., Wang, L., Sun, Z.: Hierarchical porous carbon spheres constructed from coal as electrode materials for high performance supercapacitors. RSC Adv. 7(72), 45363–45368 (2017). https://doi.org/10.1039/C7RA08026C
Song, Y., Li, W., Xu, Z., Ma, C., Liu, Y., Xu, M., Wu, X., Liu, S.: Hierarchical porous carbon spheres derived from larch sawdust via spray pyrolysis and soft-templating method for supercapacitors. Sn Appl. Sci. 1(1), 122 (2019). https://doi.org/10.1007/s42452-018-0132-6
Derraik, J.G.: The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44(9), 842–852 (2002). https://doi.org/10.1016/S0025-326X(02)00220-5
Bejgarn, S., Macleod, M., Bogdal, C., Breitholtz, M.: Toxicity of leachate from weathering plastics: an exploratory screening study with Nitocra spinipes. Chemosphere 132, 114–119 (2015). https://doi.org/10.1016/j.chemosphere.2015.03.010
He, P., Chen, L., Shao, L., Zhang, H., Lu, F.: Municipal solid waste (MSW) landfill: a source of microplastics?-Evidence of microplastics in landfill leachate. Water Res. 159, 38–45 (2019). https://doi.org/10.1016/j.watres.2019.04.060
Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X., Tang, T.: Sustainable conversion of mixed plastics into porous carbon nanosheets with high performances in uptake of carbon dioxide and storage of hydrogen. ACS Sustain. Chem. Eng. 2(12), 2837–2844 (2014). https://doi.org/10.1021/sc500603h
Gong, J., Liu, J., Chen, X., Jiang, Z., Wen, X., Mijowska, E., Tang, T.: Converting real-world mixed waste plastics into porous carbon nanosheets with excellent performance in the adsorption of an organic dye from wastewater. J. Mater. Chem. A 3(1), 341–351 (2014). https://doi.org/10.1039/C4TA05118A
Gong, J., Liu, J., Wen, X., Jiang, Z., Chen, X., Mijowska, E., Tang, T.: Upcycling waste polypropylene into graphene flakes on organically modified montmorillonite. Ind. Eng. Chem. Res. 53(11), 4173–4181 (2014). https://doi.org/10.1021/ie4043246
Zhang, H., Zhou, X.L., Shao, L.M., Lu, F., He, P.J.: Hierarchical porous carbon spheres from low-density polyethylene for high-performance supercapacitors. ACS Sustain. Chem. Eng. 7(4), 3801–3810 (2019). https://doi.org/10.1021/acssuschemeng.8b04539
Wang, X.W., Sun, G.Z., Routh, P., Kim, D.H., Huang, W., Chen, P.: Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43(20), 7067–7098 (2014). https://doi.org/10.1039/c4cs00141a
Sheng, Z.-H., Shao, L., Chen, J.-J., Bao, W.-J., Wang, F.-B., Xia, X.-H.: Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6), 4350–4358 (2011). https://doi.org/10.1021/nn103584t
Oehzelt, M.: Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett. 11(12), 5401–5407 (2011). https://doi.org/10.1021/nl2031037
Mao, X.X., Cao, Z.X., Yin, Y.H., Wang, Z.C., Dong, H.Y., Yang, S.T.: Direct synthesis of nitrogen and phosphorus co-doped hierarchical porous carbon networks with biological materials as efficient electrocatalysts for oxygen reduction reaction. Int. J. Hydrogen Energy 43(22), 10341–10350 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.100
Li, J.T., Xiao, R., Li, M., Zhang, H.Y., Wu, S.L., Xia, C.L.: Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes. Fuel Process. Technol. 192, 239–249 (2019). https://doi.org/10.1016/j.fuproc.2019.04.037
Tian, J., Liu, Z., Li, Z., Wang, W., Zhang, H.: Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors. RSC Adv. 7(20), 12089–12097 (2017). https://doi.org/10.1039/c7ra00767a
Glenis, S., Nelson, A.J., Labes, M.M.: Sulfur doped graphite prepared via arc discharge of carbon rods in the presence of thiophenes. J. Appl. Phys. 86(8), 4464 (1999). https://doi.org/10.1063/1.371387
Yang, J.: Phosphorus-doped graphite layers with high electrocatalytic activity for the CO2 reduction in an alkaline medium. Angew. Chem. Int. Ed. 50(14), 3257–3261 (2011). https://doi.org/10.1002/anie.201006768
Wang, D., Wang, Z., Li, Y., Dong, K., Shao, J., Luo, S., Liu, Y., Qi, X.: In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li- and Na-ion batteries. Appl. Surf. Sci. 464, 422–428 (2019). https://doi.org/10.1016/j.apsusc.2018.09.035
Shi, L.B., Wang, Y.P., Dong, H.K.: First-principle study of structural, electronic, vibrational and magnetic properties of HCN adsorbed graphene doped with Cr, Mn and Fe. Appl. Surf. Sci. 329, 330–336 (2015). https://doi.org/10.1016/j.apsusc.2014.12.172
Mousavi, H., Moradian, R.: Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sci. 13(8), 1459–1464 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.03.008
Zhang, Y., Mori, T., Ye, J., Antonietti, M.: Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132(18), 6294–6295 (2010). https://doi.org/10.1021/ja101749y
Tan, H., Liu, J., Huang, G., Qian, Y., Deng, Y., Chen, G.: Understanding the roles of sulfur doping for enhancing of hydrophilicity and electrochemical performance of N, S-codoped hierarchically porous carbon. ACS Appl. Energy Mater. 1(10), 5599–5608 (2018). https://doi.org/10.1021/acsaem.8b01131
Chen, H., Wang, G., Chen, L., Dai, B., Yu, F.: Three-dimensional honeycomb-like porous carbon with both interconnected hierarchical porosity and nitrogen self-doping from cotton seed husk for supercapacitor electrod. Nanomaterials 8(6), 14 (2018). https://doi.org/10.3390/nano8060412
Chung, D.Y., Son, Y.J., Yoo, J.M., Kang, J.S., Ahn, C.Y., Park, S., Sung, Y.E.: Coffee waste-derived hierarchical porous carbon as a highly active and durable electrocatalyst for electrochemical energy applications. ACS Appl. Mater. Interfaces. 9(47), 41303–41313 (2017). https://doi.org/10.1021/acsami.7b13799
Shen, F., Zhu, L.F., Qi, X.H.: Nitrogen self-doped hierarchical porous carbon from myriophyllum aquaticum for supercapacitor electrode. Chemistryselect 3(40), 11350–11356 (2018). https://doi.org/10.1002/slct.201802400
Zhou, Y., Song, Z., Hu, Q., Zheng, Q., Jiang, N., Xie, F., Jie, W., Xu, C., Lin, D.: Hierarchical nitrogen-doped porous carbon/carbon nanotube composites for high-performance supercapacitor. Superlattices Microstruct. 130, 50–60 (2019). https://doi.org/10.1016/j.spmi.2019.04.013
Zhang, J.J., Fan, H.X., Dai, X.H., Yuan, S.J.: Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode. R. Soc. Open Sci. 5(4), 12 (2018). https://doi.org/10.1098/rsos.172456
Demir, M., Saraswat, S.K., Gupta, R.B.: Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors. RSC Adv. 7(67), 42430–42442 (2017). https://doi.org/10.1039/c7ra07984b
Guo, D., Ding, B., Hu, X., Wang, Y.H., Han, F.Q., Wu, X.L.: Synthesis of Boron and Nitrogen codoped porous carbon foam for high performance supercapacitors. ACS Sustain. Chem. Eng. 6(9), 11441–11449 (2018). https://doi.org/10.1021/acssuschemeng.8b01435
Sun, Z.X., Li, K.B., Koh, S.W., Jiao, L.S.: Low-cost and scalable fabrication of hierarchically porous N-doped carbon for energy storage and conversion application. Chemistryselect 5(2), 533–537 (2020). https://doi.org/10.1002/slct.201903639
Tian, P.F., Zang, J.B., Song, S.W., Zhou, S.Y., Gao, H.W., Xu, H.G., Tian, X.Q., Wang, Y.H.: In situ template reaction method to prepare three-dimensional interconnected Fe-N doped hierarchical porous carbon for efficient oxygen reduction reaction catalysts and high performance supercapacitors. J. Power Sources 448, 11 (2020). https://doi.org/10.1016/j.jpowsour.2019.227443
Zhu, Y.D., Huang, Y., Wang, M.Y., Chen, C.: Nitrogen and phosphorus co-doped 3D hierarchical porous carbon network with highly-reversible performance in sodium storage. Ceram. Int. 45(18), 24500–24507 (2019). https://doi.org/10.1016/j.ceramint.2019.08.177
Yu, Z.S., Liu, M.L., Guo, D.Y., Wang, J.H., Chen, X., Li, J., Jin, H.L., Yang, Z., Chen, X., Wang, S.: Radially Iinwardly aligned hierarchical porous carbon for ultra-long-life lithium-sulfur batteries. Angew. Chem. Int. Edn. 59(16), 6406–6411 (2020). https://doi.org/10.1002/anie.201914972
Hu, Y., Tong, X., Zhuo, H., Zhong, L., Peng, X., Wang, S., Sun, R.: 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv. 6(19), 15788–15795 (2016). https://doi.org/10.1039/c6ra00822d
Qi, F.L., Xia, Z.X., Wei, W., Sun, H., Wang, S.L., Sun, G.Q.: Nitrogen/sulfur co-doping assisted chemical activation for synthesis of hierarchical porous carbon as an efficient electrode material for supercapacitors. Electrochim. Acta 246, 59–67 (2017). https://doi.org/10.1016/j.electacta.2017.05.192
Yi, J.N., Qing, Y., Wu, C.T., Zeng, Y.X., Wu, Y.Q., Lu, X.H., Tong, Y.X.: Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J. Power Sources 351, 130–137 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.036
Liu, Y.X., Xiao, Z.C., Liu, Y.C., Fan, L.Z.: Biowaste-derived 3D honeycomb-like porous carbon with binary-heteroatom doping for high-performance flexible solid-state supercapacitors. J. Mater. Chem. A 6(1), 160–166 (2018). https://doi.org/10.1039/c7ta09055b
Zhang, W., Yu, C.Y., Chang, L.B., Zhong, W.B., Yang, W.T.: Three-dimensional nitrogen-doped hierarchical porous carbon derived from cross-linked lignin derivatives for high performance supercapacitors. Electrochim. Acta 282, 642–652 (2018). https://doi.org/10.1016/j.electacta.2018.06.100
Hall, P.J., Mirzaeian, M., Fletcher, S.I., Sillars, F.B., Rennie, A.J.R., Shitta-Bey, G.O., Wilson, G., Cruden, A., Carter, R.: Energy storage in electrochemical capacitors: Designing functional materials to improve performance. Energy Environ. Sci. 3(9), 1238–1251 (2010). https://doi.org/10.1039/c0ee00004c
Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., Pellegrini, V.: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
Dutta, S., Bhaumik, A., Wu, K.C.W.: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7(11), 3574–3592 (2014). https://doi.org/10.1039/c4ee01075b
Mary, A.J.C., Nandhini, C., Bose, A.C.: Hierarchical porous structured N-doped activated carbon derived from Helianthus Annuus seed as a cathode material for hybrid supercapacitor device. Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2019.126617
Chen, W., Luo, M., Liu, C., Hong, S., Wang, X., Yang, P., Zhou, X.: Fast microwave self-activation from chitosan hydrogel bead to hierarchical and O, N co-doped porous carbon at an air-free atmosphere for high-rate electrodes material. Carbohyd. Polym. 219, 229–239 (2019). https://doi.org/10.1016/j.carbpol.2019.05.033
Liu, F., Wang, Z., Zhang, H., Jin, L., Chu, X., Gu, B., Huang, H., Yang, W.: Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon 149, 105–116 (2019). https://doi.org/10.1016/j.carbon.2019.04.023
Wan, L., Li, X., Li, N., Xie, M., Du, C., Zhang, Y., Chen, J.: Multi-heteroatom-doped hierarchical porous carbon derived from chestnut shell with superior performance in supercapacitors. J. Alloy. Compd. 790, 760–771 (2019). https://doi.org/10.1016/j.jallcom.2019.03.241
Han, B., Cheng, G., Wang, Y., Wang, X.: Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization. Chem. Eng. J. 360, 364–384 (2019). https://doi.org/10.1016/j.cej.2018.11.236
Yang, C.H., Nguyen, Q.D., Chen, T.H., Helal, A.S., Li, J., Chang, J.K.: Functional group-dependent supercapacitive and aging properties of activated carbon electrodes in organic electrolyte. ACS Sustain. Chem. Eng. 6(1), 1208–1214 (2017). https://doi.org/10.1021/acssuschemeng.7b03492
Anderson, M.A., Cudero, A.L., Palma, J.: Capacitive deionization as an electrochemical means of saving energy and delivering clean water: comparison to present desalination practices: will it compete? Electrochim. Acta 55(12), 3845–3856 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
Burn, S., Hoang, M., Zarzo, D., Olewniak, F., Campos, E., Bolto, B., Barron, O.: Desalination techniques—a review of the opportunities for desalination in agriculture. Desalination 364, 2–16 (2015). https://doi.org/10.1016/j.desal.2015.01.041
Zhao, S., Yan, T., Wang, H., Zhang, J., Shi, L., Zhang, D.: Creating 3D hierarchical carbon architectures with micro-, meso-, and macropores via a simple self-blowing strategy for a flow-through deionization capacitor. ACS Appl. Mater. Interfaces. 8(28), 18027–18035 (2016). https://doi.org/10.1021/acsami.6b03704
Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J.S., Keesman, K.J., Kaskel, S., Biesheuvel, P.M., Presser, V.: Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ. Sci. 6(12), 3700–3712 (2013). https://doi.org/10.1039/c3ee42209g
Chen, L.-F., Huang, Z.-H., Liang, H.-W., Gao, H.-L., Yu, S.-H.: Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Func. Mater. 24(32), 5104–5111 (2014). https://doi.org/10.1002/adfm.201400590
Gabelich, C.J., Tran, T.D., Suffet, I.H.: Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ. Sci. Technol. 36(13), 3010–3019 (2002). https://doi.org/10.1021/es0112745
Seo, S.-J., Jeon, H., Lee, J.K., Kim, G.-Y., Park, D., Nojima, H., Lee, J., Moon, S.-H.: Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res. 44(7), 2267–2275 (2010). https://doi.org/10.1016/j.watres.2009.10.020
Hou, C.-H., Huang, C.-Y.: A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination 314, 124–129 (2013). https://doi.org/10.1016/j.desal.2012.12.029
Huang, Z., Lu, L., Cai, Z., Ren, Z.J.: Individual and competitive removal of heavy metals using capacitive deionization. J. Hazard. Mater. 302, 323–331 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.064
Fang, K., Gong, H., He, W., Peng, F., He, C., Wang, K.: Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization. Chem. Eng. J. 348, 301–309 (2018). https://doi.org/10.1016/j.cej.2018.04.128
Manthiram, A., Fu, Y., Chung, S.-H., Zu, C., Su, Y.-S.: Rechargeable lithium-sulfur batteries. Chem. Rev. 114(23), 11751–11787 (2014). https://doi.org/10.1021/cr500062v
Sun, M.-H., Huang, S.-Z., Chen, L.-H., Li, Y., Yang, X.-Y., Yuan, Z.-Y., Su, B.-L.: Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45(12), 3479–3563 (2016). https://doi.org/10.1039/c6cs00135a
Wang, T., Zhu, J., Wei, Z., Yang, H., Ma, Z., Ma, R., Zhou, J., Yang, Y., Peng, L., Fei, H., Lu, B., Duan, X.: Bacteria-derived biological carbon building robust li-s batteries. Nano Lett. 19(7), 4384–4390 (2019). https://doi.org/10.1021/acs.nanolett.9b00996
Yoo, J., Cho, S.-J., Jung, G.Y., Kim, S.H., Choi, K.-H., Kim, J.-H., Lee, C.K., Kwak, S.K., Lee, S.-Y.: COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries. Nano Lett. 16(5), 3292–3300 (2016). https://doi.org/10.1021/acs.nanolett.6b00870
Xia, L., Song, Z.C., Zhou, L.X., Lin, D.M., Zheng, Q.J.: Nitrogen and oxygen dual-doped hierarchical porous carbon derived from rapeseed meal for high performance lithium-sulfur batteries. J. Solid State Chem. 270, 500–508 (2019). https://doi.org/10.1016/j.jssc.2018.12.031
Ren, G.F., Li, S.Q., Fan, Z.X., Warzywoda, J., Fan, Z.Y.: Soybean-derived hierarchical porous carbon with large sulfur loading and sulfur content for high-performance lithium-sulfur batteries. J. Mater. Chem. A 4(42), 16507–16515 (2016). https://doi.org/10.1039/c6ta07446d
Scott, V., Gilfillan, S., Markusson, N., Chalmers, H., Haszeldine, R.S.: Last chance for carbon capture and storage. Nat. Clim. Change 3(2), 105–111 (2013). https://doi.org/10.1038/nclimate1695
Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber, A., Mueller, T.E.: Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 5(6), 7281–7305 (2012). https://doi.org/10.1039/c2ee03403d
Srinivas, G., Krungleviciute, V., Guo, Z.-X., Yildirim, T.: Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 7(1), 335–342 (2014). https://doi.org/10.1039/c3ee42918k
Chen, W., Wang, X., Hashisho, Z., Feizbakhshan, M., Shariaty, P., Niknaddaf, S., Zhou, X.: Template-free and fast one-step synthesis from enzymatic hydrolysis lignin to hierarchical porous carbon for CO2 capture. Microporous Mesoporous Mater. 280, 57–65 (2019). https://doi.org/10.1016/j.micromeso.2019.01.042
Mane, S., Li, Y.-X., Liu, X.-Q., Sun, L.-B.: Development of high yielded Sn-doped porous carbons for selective CO2 capture. ACS Sustain. Chem. Eng. 7(12), 10383–10392 (2019). https://doi.org/10.1021/acssuschemeng.9b00462
Ma, X., Li, L., Chen, R., Wang, C., Zhou, K., Li, H.: Doping of alkali metals in carbon frameworks for enhancing CO2 capture: a theoretical study. Fuel 236, 942–948 (2019). https://doi.org/10.1016/j.fuel.2018.08.166
Ma, X., Li, L., Zeng, Z., Chen, R., Wang, C., Zhou, K., Li, H.: Experimental and theoretical demonstration of the relative effects of O-doping and N-doping in porous carbons for CO2 capture. Appl. Surf. Sci. 481, 1139–1147 (2019). https://doi.org/10.1016/j.apsusc.2019.03.162
Sun, F., Liu, X., Gao, J., Pi, X., Wang, L., Qu, Z., Qin, Y.: Highlighting the role of nitrogen doping in enhancing CO2 uptake onto carbon surfaces: a combined experimental and computational analysis. J. Mater. Chem. A 4(47), 18248–18252 (2016). https://doi.org/10.1039/c6ta08262a
Li, Z., Zhou, Y., Yan, W., Luo, L., Su, Z., Fan, M., Wang, S., Zhao, W.: A cost-effective monolithic hierarchical carbon cryogels with nitrogen doping and high-performance mechanical properties for CO2 capture. ACS Appl. Mater. Interfaces. (2020). https://doi.org/10.1021/acsami.0c04015
Wei, H., Chen, H., Fu, N., Chen, J., Lan, G., Qian, W., Liu, Y., Lin, H., Han, S.: Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells. Electrochim. Acta 231, 403–411 (2017). https://doi.org/10.1016/j.electacta.2017.01.194
Wang, M., Fan, X., Zhang, L., Liu, J., Wang, B., Cheng, R., Li, M., Tian, J., Shi, J.: Probing the role of O-containing groups in CO2 adsorption of N-doped porous activated carbon. Nanoscale 9(44), 17593–17600 (2017). https://doi.org/10.1039/c7nr05977a
Singh, J., Bhunia, H., Basu, S.: Synthesis of sulphur enriched carbon monoliths for dynamic CO2 capture. Chem. Eng. J. 374, 1–9 (2019). https://doi.org/10.1016/j.cej.2019.05.147
Zhao, Y., Liu, X., Yao, K.X., Zhao, L., Han, Y.: Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon. Chem. Mater. 24(24), 4725–4734 (2012). https://doi.org/10.1021/cm303072n
Sun, Y., Delucchi, M., Ogden, J.: The impact of widespread deployment of fuel cell vehicles on platinum demand and price. Int. J. Hydrogen Energy 36(17), 11116–11127 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.157
Li, Y., Wang, D., Xie, H., Zhang, C.: Electrocatalytic activity and stability of 3D ordered n-doped hierarchically porous carbon supported pt catalyst for methanol oxidation and oxygen reduction reactions. Chemistryselect 4(43), 12601–12607 (2019). https://doi.org/10.1002/slct.201903610
Liu, H., Cao, Y., Wang, F., Huang, Y.: Nitrogen-doped hierarchical lamellar porous carbon synthesized from the fish scale as support material for platinum nanoparticle electrocatalyst toward the oxygen reduction reaction. ACS Appl. Mater. Interfaces. 6(2), 819–825 (2014). https://doi.org/10.1021/am403432h
Maria Baena-Moncada, A., Coneo-Rodriguez, R., La Rosa-Toro, A., Pastor, E., Barbero, C., Angel Planes, G.: PtFe catalysts supported on hierarchical porous carbon toward oxygen reduction reaction in microbial fuel cells. J. Solid State Electrochem. 23(9), 2683–2693 (2019). https://doi.org/10.1007/s10008-019-04367-6
Kaur, P., Verma, G., Sekhon, S.S.: Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Prog. Mater Sci. 102, 1–71 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.002
Yan, J., Tang, Z., Li, B., Bi, D., Lai, Q., Liang, Y.: In situ ZnO-activated hierarchical porous carbon nanofibers as self-standing electrodes for flexible Zn-air batteries. ACS Sustain. Chem. Eng. 7(21), 17817–17824 (2019). https://doi.org/10.1021/acssuschemeng.9b04327
Kumaresan, T.K., Gunasekaran, S.S., Elumalai, S.K., Masilamani, S.A., Raman, K., Rengarajan, B., Subashchandrabose, R.: Promising nature-based nitrogen-doped porous carbon nanomaterial derived from borassus flabellifer male inflorescence as superior metal-free electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 44(47), 25918–25929 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.044
Borghei, M., Laocharoen, N., Kibena-Põldsepp, E., Johansson, L.-S., Campbell, J., Kauppinen, E., Tammeveski, K., Rojas, O.J.: Porous N, P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: alternative to Pt-C for alkaline fuel cells. Appl. Catal. B 204, 394–402 (2017). https://doi.org/10.1016/j.apcatb.2016.11.029
Wang, Z., Jia, R., Zheng, J., Zhao, J., Li, L., Song, J., Zhu, Z.: Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells. ACS Nano 5(3), 1677–1684 (2011). https://doi.org/10.1021/nn1030127
Guo, D., Shibuya, R., Akiba, C., Saji, S., Kondo, T., Nakamura, J.: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832
Liang, H.-W., Zhuang, X., Bruller, S., Feng, X., Mullen, K.: Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nature Communications 5(1), 1–7 (2014). https://doi.org/10.1038/ncomms5973
Lv, Q., Wang, N., Si, W., Hou, Z., Li, X., Wang, X., Zhao, F., Yang, Z., Zhang, Y., Huang, C.: Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries. Appl. Catal. B 261, 118234 (2020). https://doi.org/10.1016/j.apcatb.2019.118234
Yu, L., Pan, X., Cao, X., Hu, P., Bao, X.: Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J. Catal. 282(1), 183–190 (2011). https://doi.org/10.1016/j.jcat.2011.06.015
Xu, J., Xia, C., Li, M., Xiao, R.: Porous nitrogen-doped carbons as effective catalysts for oxygen reduction reaction synthesized from cellulose and polyamide. Chemelectrochem 6(22), 5735–5743 (2019). https://doi.org/10.1002/celc.201901763
Contreras, E., Dominguez, D., Tiznado, H., Guerrero-Sanchez, J., Takeuchi, N., Alonso-Nunez, G., Contreras, O.E., Oropeza-Guzman, M.T., Romo-Herrera, J.M.: N-Doped carbon nanotubes enriched with graphitic nitrogen in a buckypaper configuration as efficient 3D electrodes for oxygen reduction to H2O2. Nanoscale 11(6), 2829–2839 (2019). https://doi.org/10.1039/c8nr08384c
Acknowledgement
The work is financially supported by National Key R&D Program of China (2018YFD1100600).
Funding
National Key R&D Program of China (2018YFD1100600).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflicts of interest
No conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhou, XL., Zhang, H., Shao, LM. et al. Preparation and Application of Hierarchical Porous Carbon Materials from Waste and Biomass: A Review. Waste Biomass Valor 12, 1699–1724 (2021). https://doi.org/10.1007/s12649-020-01109-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-020-01109-y