Abstract
New tendencies respect to economic development model in the process of agro-industrial materials are oriented to circular economy in which the treatment and reuse of wastes and by-product play a crucial role. Over the last decades, different products from agro-food industries have been processed by membrane technologies (micro, ultra and nano-filtration). Today, these pressure-driven membrane processes have been subjected to various applications, like food wastes, bioproduct, and by-product processing. However, the most challenging issue concerns about the recovery of high-added value components from their by-products. The aim of this work is to provide a wide understanding of the current framework for membrane technology in this field. Thereby, the utilization of aqueous wastes from industries is highlighted; it denotes the real advantages that these methodologies offer in terms of high-added value solute recovery. Finally, this review discusses in detail the following aspects: framework of integrated membrane systems in wastewater fractionation, the economic framework as the limitation of membrane technology, and the environmental benefits of membrane technology (water reclamation).
Similar content being viewed by others
Abbreviations
- MF:
-
Microfiltration
- UF:
-
Ultrafiltration
- NF:
-
Nanofiltration
- TMP:
-
Transmembrane pressure
- MWCO:
-
Molecular weight cut-off
- R & D:
-
Research and development
References
Ghisellini, P., Cialani, C., Ulgiati, S.: A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Cleaner Prod. 114, 11–32 (2016). 10.1016/j.jclepro.2015.09.007
Ren, J., Manzardo, A., Toniolo, S., Scipioni, A.: Sustainability of hydrogen supply chain. Part I: identification of critical criteria and cause-effect analysis for enhancing the sustainability using DEMATEL. Int. J. Hydrogen Energy. 38(33), 14159–14171 (2013). 10.1016/j.ijhydene.2013.08.126
Mirabella, N., Castellani, V., & Sala, S.: Current options for the valorization of food manufacturing waste: a review. J. Cleaner Prod.. 65, 28–41 (2014). doi:10.1016/j.jclepro.2013.10.051
Petruccioli, M., Raviv, M., Di Silvestro, R., Dinelli, G.: Agriculture and agro-industrial wastes, by-products, and wastewaters. Comprehensive Biotechnology. In: Moo-Young, M. (ed.). UK: Elsevier (2011). doi:10.1016/B978-0-08-088504-9.00389-5
Russo, C.: A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J. Membr. Sci. 288, 239–246 (2007). 10.1016/j.memsci.2006.11.020
Van der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W., Leysen, R.: A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog.. 2(1), 46–56 (2003). doi:10.1002/ep.670220116
Galanakis, C.M.: Separation of functional macromolecules and micromolecules: from ultrafiltration to the border of nanofiltration. Trends Food Sci. Technol. 42, 44–63 (2015). doi:10.1016/j.tifs.2014.11.005
Galanakis, C.M.: Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 26, 68–87 (2012). 10.1016/j.tifs.2012.03.003
Galanakis, C.M.: (2015). The universal recovery strategy. Food waste recovery: processing technologies and industrial techniques. In: Galanakis, C.M. (ed.).UK: Elsevier. doi:10.1016/B978-0-12-800351-0.00003-1
Li, J., Chase, H.A.: Applications of membrane techniques for purification of natural products. Biotechnol. Lett. 32, 601–608 (2010). doi:10.1007/s10529-009-0199-7
Castro-Muñoz, R., Yáñez-Fernández, J., Fíla, V.: Phenolic compounds recovered from agro-food by-products using membrane technologies: an overview. Food. Chem. 213, 753–762 (2016). 10.1016/j.foodchem.2016.07.030
Jiao, B., Cassano, A., Drioli, E.: Recent advances on membrane processes for the concentration of fruit juices: a review. J. Food Eng. 63, 303–324 (2004). 10.1016/j.jfoodeng.2003.08.003
Cheryan, M., Rajagopalan, N.: Membrane processing of oily streams. Wastewater treatment and waste reduction. J. Membr. Sci. 151, 13–28 (1998). 10.1016/S0376-7388(98)00190-2
Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A., Agarwal, S.: Chemical treatment technologies for waste-water recycling-An overview. RSC Adv. 2, 6380–6388 (2012). DOI:10.1039/C2RA20340E
Cassano, A., Donato, L., Conidi, C., Drioli, E.: Recovery of bioactive compounds in kiwifruit juice by ultrafiltration. Innov. Food Sci. Emerg, Technol.. 9, 556–562 (2008). doi:10.1016/j.ifset.2008.03.004
Conidi, C., Cassano, A., Garcia-Castello, E.: Valorization of artichoke wastewaters by integrated membrane process. Water Res. 48, 363–374 (2014). doi:10.1016/j.watres.2013.09.047
Galanakis, C.M., Fountoulis, G., Gekas, V.: Nanofiltration of brackish groundwater by using a polypiperazine membrane. Desalination. 286, 277–284 (2012)
Galanakis, C.M., Tornberg, E., Gekas, V.: Clarification of high-added value products from olive mill wastewater. J. Food Eng. 99, 190–197 (2010). doi:10.1016/j.jfoodeng.2010.02.018
Salehi, F.: Current and future applications for nanofiltration technology in the food processing. Food Bioprod. Process. 92, 161–177 (2014). doi:10.1016/j.fbp.2013.09.005
Cassano, A., Conidi, C., Galanakis, C.M., Castro-Muñoz, R.: (2016). Recovery of polyphenols from olive mill wastewaters by membrane operations. Membrane technologies for biorefining. In: Figoli, A., A., Cassano, &, Basile, A. (eds.). UK: Elsevier. doi:10.1016/B978-0-08-100451-7.00007-4
Vojvodić, A., Komes, D., Vovk, I., Belščak-Cvitanović, A., Bušić, A.: (2016). Compositional evaluation of selected agro-industrial wastes as valuable sources for the recovery of complex carbohydrates. Food Res. Int. 89, 565–573. doi:10.1016/j.foodres.2016.07.023
O’Neill, M.A., York, W.S.: (2003). The composition and structure of primary cell walls. The Plant Cell Wall. In: Rose, JKC. (ed.). UK: Blackwell Publishing
Bampidis, V.A., Robinson, P.H.: Citrus by-products as ruminant feeds : a review. Anim. Feed Sci. Technol. 128, 175–217 (2006). 10.1016/j.anifeedsci.2005.12.002
Gattuso, G., Barreca, D., Gargiulli, C., Leuzzi, U., Caristi, C.: Flavonoids composition of citrus juices. Molecules. 12, 1641–1673 (2007). doi:10.3390/12081641
Benavente-García, O., Castillo, J.: Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food. Chem. 56, 6185–6205 (2008). doi:10.1021/jf8006568
Di Donna, L., De Luca, G., Mazzotti, F., Napoli, A., Salerno, R., Taverna, D., Sindona, G.: Statin-like principles of Bergamot fruit (Citrus bergamia): isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J. Nat. Prod. 72, 1352–1354 (2009). doi:10.1021/np900096w
Nakajiima, V.M., Macedo, G.A., Macedo, J.A.: Citrus bioactive phenolics: Roles in the obesity treatment. LWT-Food Sci. Technol. 59, 1205–1212 (2014). doi:10.1016/j.lwt.2014.02.060
González-Molina, E., Domínguez-Perles, R., Moreno, D.A., García-Viguera, C.: Natural bioactive compounds of Citrus limon for food and health. J. Pharm. Biomed. Anal. 51, 327–354 (2010). 10.1016/j.jpba.2009.07.027
Kato, M., Ikoma, Y., Matsumoto, H., Sugiura, M., Hyodo, H., Yano, Y.: Accumulation of carotenoids and expression of carotenoid biosynthesis genes during maturation in citrus fruit. Plant Physiol. 134, 824–837 (2004) doi:10.1104/pp.103.031104
Matsumoto, H., Ikoma, Y., Kato, M., Kuniga, T., Nakajima, N., Yoshida, T.: Quantification of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. J. Agric. Food. Chem. 55, 2356–2368 (2007). doi:10.1021/jf062629c
O’Shea, N., Arendt, E.K., Gallagher, E.: Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol. 16, 1–10 (2012). 10.1016/j.ifset.2012.06.002
Abirami, A., Nagarani, G., Siddhuraju, P.: Measurement of functional properties and health promoting aspects-glucose retardation index of peel, pulp and peel fiber from Citrus hystrix and Citrus maxima. Bioact. Carbohydr. Dietary Fibre. 4, 16–26 (2014). doi:10.1016/j.bcdf.2014.06.001
Escobedo-Avellaneda, Z., Gutierrez-Uribe, J., Valdez-Fragoso, A., Torres, J.A., Welti-Chanes, J.: Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. J. Funct. Foods. 6, 470–481 (2014). doi:10.1016/j.jff.2013.11.013
Barba, F.J., Brianceau, S., Turk, M., Boussetta, N., Vorobiev, E.: Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food Bioprocess Technol. 8(5), 1139–1148 (2015). doi:10.1007/s11947-015-1482-3
Brianceau, S., Turk, M., Vitrac, X., Vorobiev, E.: Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innova. Food Sci. Emerg. Technol. 29, 2–8 (2015). doi:10.1016/j.ifset.2014.07.010
El Darra, N., Grimi, N., Vorobiev, E., Louka, N., Maroun, R.: Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food Bioprocess Technol. 6(5), 1281–1289 (2013). doi:10.1007/s11947-012-0869-7
Liazid, A., Guerrero, R.F., Cantos, E., Palma, M., Barroso, C.G.: Microwave assisted extraction of anthocyanins from grape skins. Food. Chem. 124(3), 1238–1243 (2011). doi:10.1016/j.foodchem.2010.07.053
Bleve, M., Ciurlia, L., Erroi, E., Lionetto, G., Longo, L., Rescio, L., Schettino, T., Vasapollo, G.: An innovative method for the purification of anthocyanins from grape skin extracts by using liquid and sub-critical carbon dioxide. Sep. Purif. Technol. 64(2), 192–197 (2008). doi:10.1016/j.seppur.2008.10.012
Pascual-Martí, M.: Supercritical fluid extraction of resveratrol from grape skin of Vitis vinifera and determination by HPLC. Talanta. 54(4), 735–740 (2001). doi:10.1016/S0039-9140(01)00319-8
Corrales, M., García, A.F., Butz, P., Tauscher, B.: Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J. Food Eng. 90(4), 415–421 (2009). doi:10.1016/j.jfoodeng.2008.07.003
Stavikova, L., Polovka, M., Hohnova, B., Karasek, P., Roth, M.: Antioxidant activity of grape skin aqueous extracts from pressurized hot water extraction combined with electron paramagnetic resonance spectroscopy. Talanta. 85(4), 2233–2240 (2011). doi:10.1016/j.talanta.2011.07.079
Rajha, H.N., Chacar, S., Afif, C., Vorobiev, E., Louka, N., Maroun, R.G.: β-cyclodextrin-assisted extraction of polyphenols from vine shoot cultivars. J. Agric. Food. Chem. 63(13), 3387–3393 (2015). doi:10.1021/acs.jafc.5b00672
Wong Paz, J.E., Muñiz Márquez, D.B., Martínez Ávila, G.C.G., Belmares Cerda, R.E., Aguilar, C.N.: Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrason. Sonochem. 22, 1–8 (2014). 10.1016/j.ultsonch.2014.06.001
Sarkar, B., Chakrabart, P.P., Vijaykumar, A., Kale, V.: Wastewater treatment in diary industries-possibility of reuse. Desalination. 195, 141–152 (2006). doi:10.1016/S0011-9164(02)00661-6
Yorgun, M.S., Akmehmet, I., Saygin, O.: Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment. Desalination. 229, 204–216 (2008). doi:10.1016/j.desal.2007.09.008
Cassano, A., Conidi, C., Giorno, L., & Drioli, E. : Fractionation of olive mill wastewaters by membrane separation techniques. J. Hazard. Mater. 248–249, 185–193 (2013). doi:10.1016/j.jhazmat.2013.01.006
Cassano, A., Conidi, C., Drioli, E.: Comparison of the performance of UF membranes in olive mill wastewaters treatment. Water Res. 45, 3197–3204 (2011). doi:10.1016/j.watres.2011.03.041
Conidi, C., Mazzei, R., Cassano, A., Giorno, L.: Integrated membrane system for the production of phytotherapics from olive mill wastewaters. J. Membr. Sci. 454, 322–329 (2014). doi:10.1016/j.memsci.2013.12.021
El-Abbassi, A., Khayet, M., Hafidi, A.: Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater. Water Res. 45, 4522–4530 (2011). doi:10.1016/j.watres.2011.05.044
Akdemir, E.O., Ozer, A.: Application of a statistical technique for olive oil mill wastewater treatment using ultrafiltration process. Sep. Purif. Technol. 62, 222–227 (2008). doi:10.1016/j.seppur.2008.01.006
Akdemir, E.O., Ozer, A.: Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination. 249, 660–666 (2009). doi:10.1016/j.desal.2008.06.035
Yahiaoui, O., Lounici, H., Abdi, N., Drouiche, N., Ghaffour, N., Pauss, A., Mameri, N.: Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes. Chem. Eng. Process. Process Intensif. 50, 37–41 (2011). doi:10.1016/j.cep.2010.11.003
Conidi, C., Rodriguez-Lopez, A.D., Garcia-Castello, E.M., Cassano, A.: Purification of artichoke polyphenols by using membrane filtration and polymeric resins. Sep. Purif. Technol. 144, 153–161 (2015). doi:10.1016/j.seppur.2015.02.025
Cassano, A., Conidi, C., Ruby Figueroa, R., Castro-Muñoz, R.: A two-step nanofiltration process for the production of phenolic-rich fractions from artichoke aqueous extracts. Int. J. Mol. Sci. 16, 8968–8987 (2015). doi:10.3390/ijms16048968
Leberknight, J., Wielenga, B., Lee-Jewett, A., Menkhaus, T.J.: Recovery of high value protein from a corn ethanol process by ultrafiltration and an exploration of the associated membrane fouling. J. Membr. Sci. 366, 405–412 (2011). 10.1016/j.memsci.2010.10.033
Cassano, A., Cabri, W., Mombelli, G., Peterlongo, F., Giorno, L.: Recovery of bioactive compounds from artichoke brines by nanofiltration. Food Bioprod. Process. 98, 257–265 (2016). doi:10.1016/j.fbp.2016.02.004
Castro-Muñoz, R., Yáñez-Fernández, J.: Valorization of nixtamalization wastewaters by integrated membrane process. Food Bioprod. Process. 95, 7–18 (2015). doi:10.1016/j.fbp.2015.03.006
Castro-Muñoz, R., Orozco-Álvarez, C., Cerón-Montes, G.I., Yáñez-Fernández, J.: Characterization of the microfiltration process for the treatment of nixtamalization wastewaters. Ingeniería Agrícola y Biosistemas. 7(1), 23–34 (2015). doi:10.5154/r.inagbi.2015.03.001
Castro-Muñoz, R., Cerón-Montes, G.I., Barragán-Huerta, B.E., Yáñez-Fernández, J.: Recovery of carbohydrates from nixtamalization wastewaters (Nejayote) by ultrafiltration. Revista Mexicana de Ingeniería Química. 14(3), 735–744 (2015)
Castro-Muñoz, R., Barragán-Huerta, B.E., Yáñez-Fernández, J.: The use of nixtamalization waste waters clarified by ultrafiltration for production of a fraction rich in phenolic compounds. Waste Biomass Valoriz.. 7(5), 1167–1176 (2016). doi:10.1007/s12649-016-9512-6
Ruby-Figueroa, R., Cassano, A., Drioli, E.: Ultrafiltration of orange press liquor: optimization of operating conditions for the recovery of antioxidant compounds by response surface methodology. Sep. Purif. Technol. 98, 255–261 (2012). doi:10.1016/j.seppur.2012.07.022
Conidi, C., Cassano, A., Drioli, E.: Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Process. 90, 867–874 (2012). doi:10.1016/j.fbp.2012.07.005
Díaz-Reinoso, B., Moure, A., Domínguez, H., Parajó, J.C.: Ultra- and nanofiltration of aqueous extracts from distilled fermented grape pomace. J. Food Eng. 91, 587–593 (2009). doi:10.1016/j.jfoodeng.2008.10.007
Díaz-Reinoso, B., González-López, N., Moure, A., Domínguez, H., Parajó, J.C.: Recovery of antioxidants from industrial waste liquors using membranes and polymeric resins. J. Food Eng. 96, 127–133 (2010). doi:10.1016/j.jfoodeng.2009.07.007
Galanakis, C.M., Markouli, E., Gekas, V.: Recovery and fractionation of different phenolic classes from winery sludge using ultrafiltration. Sep. Purif. Technol. 107, 245–251 (2013). doi:10.1016/j.seppur.2013.01.034
Patsioura, A., Galanakis, C.M., Gekas, V.: Ultrafiltration optimization for the recovery of β-glucan from oat mill waste. J. Membr. Sci. 373, 53–63 (2011). doi:10.1016/j.memsci.2011.02.032
Xu, L., Lamb, K., Layton, L., Kumar, A.: A membrane-based process for recovering isoflavones from a waste stream of soy processing. Food Res. Int. 37, 867–874 (2004). doi:10.1016/j.foodres.2004.05.004
Moure, A., Domínguez, H., Parajo, J.C.: Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 41, 447–456 (2006). doi:10.1016/j.jclepro.2013.10.051
Aguiar Prudencio, A.P., Schwinden Prudencio, E., Castanho Amboni, R.D.M., Negrao Murakami, A.N., Maraschin, M., Cunha Petrus, J.C., Ogliari, P.J., Santos Leite, R.: Phenolic composition and antioxidant activity of the aqueous of bark from residues from mate tree (Ilex paraguariensis St.Hil.) bark harvesting concentrated by nanofiltration. Food Bioprod. Process. 90, 399–405 (2012). doi:10.1016/j.fbp.2011.12.003
Nawaz, H., Shi, J., Mittal, G.S., Kakuda, Y.: Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Sep. Purif. Technol. 48, 176–181 (2006). doi:10.1016/j.seppur.2005.07.006
Chabeaud, A., Vandanjon, L., Bourseau, P., Jaouen, P., Chaplain- Derouniot, M., Guerard, F.: Performances of ultrafiltration membranes for fractionating a fish protein hydrolysate: application to the refining of bioactive peptidic fractions. Sep. Purif. Technol. 66, 463–471 (2009). doi:10.1016/j.seppur.2009.02.012
Picot, L., Ravallec, R., Fouchereau-Peron, M., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., et al.: Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. J. Sci. Food Agric. 90, 1819–1826 (2010). doi:10.1002/jsfa.4020
Almécija, M.C., Ibáñez, R., Guadix, A., Guadix, E.M.: Effect on pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane. J. Membr. Sci. 288, 28–35 (2007). doi:10.1016/j.memsci.2006.10.021
Baldasso, C., Barros, T.C., Tessaro, I.C.: Concentration and purification of whey proteins by ultrafiltration. Desalination. 278, 381–386 (2011). doi:10.1016/j.desal.2011.05.055
Cuartas-Uribe, B., Alcaina-Miranda, M.I., Soriano-Costa, E., Mendoza-Roca, J.A., Iborra-Clar, M.I., Lora-García, J.: A study of the separation of lactose from whey ultrafiltration permeate using nanofiltration. Desalination. 241, 244–255 (2009). doi:10.1016/j.desal.2007.11.086
Crespo, J.G., Brazinha, C.: Membrane processing: Natural antioxidants from winemaking by-products. Filtration +. Separation. 47, 32–35 (2010). doi:10.1016/S0015-1882(10)70079-3
Cassano, A., Conidi, C., Drioli, E.: Physico-chemical parameters of cactus pear (Opuntia ficus-indica) juice clarified by microfiltration and ultrafiltration processes. Desalination. 250, 1101–1104 (2010). doi:10.1016/j.desal.2009.09.117
Verma, S.P., Sarkar, B.: Analysis of flux decline during ultrafiltration of apple juice in a batch cell. Food Bioprod. Process. 94, 147–157 (2015). doi:10.1016/j.fbp.2015.03.002
Astaraee, R.S., Mohammadi, T., Kasiri, N.: Analysis of BSA, dextran and humic acid fouling during ultrafiltration, experimental and modelling. Food Bioprod. Process. 94, 331–341 (2015). doi:10.1016/j.fbp.2014.04.003
Galanakis, C.M., Castro-Muñoz, R., Cassano, A., Conidi, C.: (2016). Recovery of high-added-value compounds from food waste by membrane technology. Membrane technologies for biorefining. In: Figoli, A., Cassano, A., Basile, A. (eds.). UK: Elsevier. doi:10.1016/B978-0-08-100451-7.00008-6
Ruby-Figueroa, R.A., Cassano, A., Drioli, E.: Ultrafiltration of orange press liquor: optimization for permeate flux and fouling index by response surface methodology. Sep. Purif. Technol. 80, 1–10 (2011). doi:10.1016/j.seppur.2011.03.030
Giacobbo, A., Do Prado, J.M., Meneguzzi, A., Moura Bernardes, A., De Pinho, M.N.: Microfiltration for the recovery of polyphenols from winery effluents. Sep. Purif. Technol. 143, 12–18 (2015). doi:10.1016/j.seppur.2015.01.019
Giacobbo, A., Meneguzzi, A., Bernardes, A.M., De Pinho, M.N.: Pressure-driven membrane processes for the recovery of antioxidant compounds from winery effluents. J. Cleaner Prod. 155, 172–178 (2016). doi:10.1016/j.jclepro.2016.07.033
Garcia-Ivars, J., Iborra-Clar, M.I., Alcaina-Miranda, M.I., Mendoza-Roca, J.A., Pastor-Alcañiz, L.: Treatment of table olive processing wastewaters using novel photomodified ultrafiltration membranes as first step for recovering phenolic compounds. J. Hazard. Mat. 290, 51–59 (2015). doi:10.1016/j.jhazmat.2015.02.062
Paraskeva, C. A., Papadakis, V.G., Tsarouchi, E., Kanellopoulou, D.G., Koutsoukos, P.G.: Membrane processing for olive mill wastewater fractionation. Desalination. 213, 218–229 (2007). doi:10.1016/j.desal.2006.04.087
Almanasrah, M., Brazinha, C., Kallioinen, M., Duarte, L.C., Roseiro, L.B., Bogel-Lukasik, R., Carvalheiro, F., Manttari, M., Crespo, J.G.: Nanofiltration and reverse osmosis as a platform production of natural botanic extracts: the case study of carob by-products. Sep. Purif. Technol. 149, 389–397 (2015). doi:10.1016/j.seppur.2015.06.008
Brazinha, C., Cadima, M., Crespo, J.G.: Valorisation of spent coffee through membrane processing. J. Food Eng. 149, 123–130 (2015). doi:10.1016/j.jfoodeng.2014.07.016
Santamaría, B., Salazar, G., Beltrán, S., Cabezas, J. L.: Membrane sequences for fractionation of polyphenolic extracts from defatted milled grape seeds. Desalination. 148, 103–109 (2002). doi:10.1016/S0011-9164(02)00661-6
Cassano, A., Conidi, C., Ruby-Figueroa, R.: Recovery of flavonoids from orange press liquor by an integrated membrane process. Membranes. 4, 509–524 (2014). doi:10.3390/membranes4030509
Córdova, A., Astudillo, C., Giorno, L., Guerrero, C., Conidi, C., Illanes, A., Cassano, A.: Nanofiltration potential for the purification of highly concentrated enzymatically produced oligosaccharides. Food Bioprod. Process. 98, 50–61 (2016). doi:10.1016/j.fbp.2015.11.005
Tang, D.S., Yin, G.M., He, Y.Z., Hu, S.Q., Li, B., Li, L., et al.: Recovery of protein from brewer’s spent grain by ultrafiltration. Biochem. Eng. J. 48, 1–5 (2009). doi:10.1016/j.bej.2009.05.019
Galanakis, C.M., Chasiotis, S., Botsaris, G., Gekas, V.: Separation and recovery of proteins and sugars from Halloumi cheese whey. Food Res. Int. 65, 477–483 (2014). doi:10.1016/j.foodres.2014.03.060
Soufi-Kechaou, E., Derouiniot-Chaplin, M., Ben Amar, R., Jaouen, P., & Berge, J.P.: Recovery of valuable marine compounds from cuttlefish by-product hydrolysates: combination of enzyme bioreactor and membrane technologies. Comptes Rendus Chimie, (2016). doi:10.1016/j.crci.2016.03.018
Sanmartín, B., Díaz, O., Rodríguez-Turienzo, L., Cobos, A.: Composition of caprine whey protein concentrates produced by membrane technology after clarification of cheese whey. Small Rumin. Res.. 105, 186–192 (2012). doi:10.1016/j.smallrumres.2011.11.020
Cheang, B., Zydney, A.L.: A two-stage ultrafiltration process for fractionation of whey protein isolate. J. Membr. Sci. 231, 159–167 (2004). doi:10.1016/j.memsci.2003.11.014
Scordino, M., Mauro, A.D., Passerini, A., Maccarone, E.: Highly purified sugar concentrate from a residue of citrus pigments recovery process. LWT-Food Sci. Technol.. 40, 713–721 (2007). doi:10.1016/j.lwt.2006.03.007
Atra, R., Vatai, G., Bekassy-Molnar, E., Balint, A.: Investigation of ultra and nano-filtration for utilization of whey protein and lactose. J. Food Eng. 67, 325–332 (2005). doi:10.1016/j.jfoodeng.2004.04.035
Gutiérrez-Macías, P., Montañez-Barragán, B., Barragán-Huerta, B. E.: A review of agro-food waste transformation into feedstock for reuse in fermentation. Fresenius Environ. Bull. 24(11), 3703–3716 (2015)
Garcia-Castello, E., Cassano, A., Criscuoli, A., Conidi, C., Drioli, E.: Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 44, 3883–3892 (2010). doi:10.1016/j.watres.2010.05.005
Zagklis, D.P., Paraskeva, C.A.: Membrane filtration of agro-industrial wastewaters and isolation of organic compounds with high added values. Water Sci. Technol. 69, 202–207 (2014). doi:10.2166/wst.2013.683
Zagklis, D.P., Vavouraki, A.I., Kornaros, M.E., Paraskeva, C.A.: Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. J. Hazard. Mat. 285, 69–76 (2015). doi:10.1016/j.jhazmat.2014.11.038
Zagklis, D.P., Paraskeva, C.A.: Purification of grape marc phenolic compounds through membrane filtration and resin adsorption/desorption. Sep. Purif. Technol. 156, 328–335 (2015). doi:10.1016/j.seppur.2015.10.019
Bazzarelli, F., Piacentini, E., Poerio, T., Mazzei, R., Cassano, A., Giorno, L.: Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs. J. Membr. Sci. 497, 402–409 (2016). doi:10.1016/j.memsci.2015.09.049
Servili, M., Esposto, S., Veneziani, G., Urbani, S., Taticchi, A., Di Maio, I., Selvaggini, R., Sordini, B., Montedoro, G.: Improvement of bioactive phenol content in virgin olive oil with an olive-vegetation water concentrate produced by membrane treatment. Food. Chem. 124, 1308–1315 (2011). doi:10.1016/j.foodchem.2010.07.042
Giacobbo, A., Moura Bernardes, A., De Pinho, M.N.: Nanofiltration for the recovery of low molecular weight polysaccharides and polyphenols from winery effluents. Sep. Sci. Technol. 48, 2524–2530 (2013). doi:10.1080/01496395.2013.809762
Giacobbo, A., Oliveira, M., Duarte, E.C.N. F., Mira, H. M.C., Moura Bernardes, A., De Pinho, M.N.: Ultrafiltration based process for the recovery of low molecular weight polysaccharides and polyphenols from winery effluents. Sep. Sci. Technol. 48, 438–444 (2013). doi:10.1080/01496395.2012.725793
Giacobbo, A., Moura Bernardes, A., De Pinho, M.N.: Sequential pressure-driven membrane operations to recover and fractionate polyphenols and polysaccharides from second racking wine lees. Sep. Purif. Technol. 173, 49–54 (2017). doi:10.1016/j.seppur.2016.09.007
Machado, M.T.C., Trevisan, S., Pimentel-Souza, J.D.R., Pastore, G.M., Hubinger, M. D.: Clarification and concentration of oligosaccharides from artichoke extract by a sequential process with microfiltration and nanofiltration membranes. J. Food Eng. 180, 120–128 (2016). doi:10.1016/j.jfoodeng.2016.02.018
Ng, C.Y., Mohammad, A.W., Ng, L.Y., Jahim, J. M.: Sequential fractionation of high-added coconut products using membrane processes. J. Ind. Eng. Chem. 25, 162–167 (2015). doi:10.1016/j.jiec.2014.10.028
Bellona, C., Drewes, J.E., Xu, P., Amy, G.: Factors affecting the rejection of organic solutes during NF/RO treatment-a literature review. Water Res. 38(12), 2795–2809 (2004). doi:10.1016/j.watres.2004.03.034
Strathmann, H., Giorno, L., Drioli, E.: An introduction to Membrane Science and Technology. Rome: Consiglio Nazionale delle Richerche (2006)
Brazinha, C., Crespo, J.G.: Valorization of food processing streams for obtaining extracts enriched in biologically active compounds. Integrated Membrane Operations: In the food Production. In: A. Cassano, & E. Drioli(Eds.). USA: De Gruyter (2014)
Al-Amoudi, A., Lovitt, R.W.: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Membr. Sci. 303, 4–28 (2007). doi:10.1016/j.memsci.2007.06.002
Shi, X., Tal, G., Hankins, N.P., Gitis, V.: Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process Eng.. 1, 121–138 (2014). doi:10.1016/j.jwpe.2014.04.003
Strathmann, H.: Membrane separation processes: Current relevance and future opportunities. AlChE J. 47(5), 1077–1087 (2001). doi:10.1002/aic.690470514
Buonomenna, M.G.: (2016). Smart composites membranes for advanced wastewater treatments. Smart Composite Coating and Membranes. In: Montemor, M.F. (ed.). UK: Elsevier, pp. 371–419. doi:10.1016/B978-1-78242-283-9.00014-2
Asano, T., Burton, F.L., Leverenz, H.L., Tsuchihashi, R., Tchobanoglous G.: Water reuse: issues, Technologies and Applications. In Metcalf & Eddy (Eds.). New York: McGraw-Hill. (2007)
WHO- World Health Organization: Guidelines for drinking-water quality. WHO Library Cataloguing in Publication Data, Geneva (2011)
Ochando Pulido, J.M. (2016). A review on the use of membrane technology and fouling control for olive mill wastewater treatment. Sci. Total Environ. 563–564, 664–665. doi:10.1016/j.scitotenv.2015.09.151
Goh, P.S., Matsuura, T., Ismail, A.F., Hilal, N.: Recent trends in membranes and membrane processes for desalination. Desalination. 391, 43–60 (2016). 10.1016/j.desal.2015.12.016
Galanakis, C.M.: Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod. Process. 91, 575–579 (2013). doi:10.1016/j.fbp.2013.01.004
Castro-Muñoz, R., Fíla, V., Barragán-Huerta, B.E., Yáñez-Fernández, J., Piña-Rosas, J.A., Arboleda-Mejía J.: Processing of Xoconostle fruit (Opuntia joconostle) juice for improving its commercialization using membrane filtration. J. Food Process. Preserv. (2017). doi:10.1111/jfpp.13394
Acknowledgements
R. Castro-Muñoz acknowledges the European Commission—Education, Audiovisual and Culture Executive Agency (EACEA) for his PhD scholarship under the program: Erasmus Mundus Doctorate in Membrane Engineering—EUDIME (FPA No 2011-0014, Edition V, http://eudime.unical.it). P.C. Denis expresses his gratitude to EACEA as well for his Erasmus Mundus Master Scholarship under the program: Erasmus Mundus International Master of Science in Environmental Technology and Engineering—IMETE (Course N0 2011-0172). This work was partially supported by the Operational Program Prague—Competitiveness (CZ.2.16/3.1.00/24501), “National Program of Sustainability“(NPU I LO1613) MSMT-43760/2015, Czech Science Foundation (Grant GACR No. 15-06479S) and financial support from specific university research (IGA 2017, MSMT No 20-SVV/2017).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Castro-Muñoz, R., Barragán-Huerta, B.E., Fíla, V. et al. Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds. Waste Biomass Valor 9, 513–529 (2018). https://doi.org/10.1007/s12649-017-0003-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-017-0003-1