[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A review of the synthesis and application of zeolites from coal-based solid wastes

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Zeolite derived from coal-based solid wastes (coal gangue and coal fly ash) can overcome the environmental problems caused by coal-based solid wastes and achieve valuable utilization. In this paper, the physicochemical properties of coal gangue and coal fly ash are introduced. The mechanism and application characteristics of the pretreatment processes for zeolite synthesis from coal-based solid wastes are also introduced. The synthesis processes of coal-based solid waste zeolite and their advantages and disadvantages are summarized. Furthermore, the application characteristics of various coal-based solid waste zeolites and their common application fields are illustrated. Finally, we propose an alkaline fusion-assisted supercritical hydrothermal crystallization as an efficient method for synthesizing coal-based solid waste zeolites. In addition, more attention should be given to the recycling of alkaline waste liquid and the application of coal-based solid waste zeolites in the field of volatile organic compound adsorption removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BP p.l.c., Statistical Review of World Energy 2020, BP p.l.c., London [2020-11-10]. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html

  2. G.F. Wang, Y.X. Xu, and H.W. Ren, Intelligent and ecological coal mining as well as clean utilization technology in China: Review and prospects, Int. J. Min. Sci. Technol., 29(2019), No. 2, p. 161.

    Article  Google Scholar 

  3. BP p.l.c., BP Energy Outlook 2020, BP p.l.c., London [2020-11-10]. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook/demand-by-fuel/coal.html

  4. J.Y. Li and J.M. Wang, Comprehensive utilization and environmental risks of coal gangue: A review, J. Cleaner Prod., 239(2019), art. No. 117946.

  5. Z.T. Yao, M.S. Xia, P.K. Sarker, and T. Chen, A review of the alumina recovery from coal fly ash, with a focus in China, Fuel, 120(2014), p. 74.

    Article  CAS  Google Scholar 

  6. V. Sibanda, S. Ndlovu, G. Dombo, A. Shemi, and M. Rampou, Towards the utilization of fly ash as a feedstock for smelter grade alumina production: A review of the developments, J. Sustainable Metall., 2(2016), No. 2, p. 167.

    Article  Google Scholar 

  7. Y.B. Dong, Y. Liu, and H. Lin, Leaching behavior of V, Pb, Cd, Cr, and As from stone coal waste rock with different particle sizes, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 861.

    Article  CAS  Google Scholar 

  8. F. Mushtaq, M. Zahid, I.A. Bhatti, S. Nasir, and T. Hussain, Possible applications of coal fly ash in wastewater treatment, J. Environ. Manage., 240(2019), p. 27.

    Article  CAS  Google Scholar 

  9. M. Li, J.X. Zhang, A.L. Li, and N. Zhou, Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control, J. Cleaner Prod., 254(2020), art. No. 120113.

  10. Y.C. Gao, J.G. Jiang, Y. Meng, A. Aihemaiti, T.Y. Ju, X.J. Chen, and F. Yan, A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming, Renew. Energy, 149(2020), p. 786.

    Article  CAS  Google Scholar 

  11. M. Yoldi, E.G. Fuentes-Ordoñez, S.A. Korili, and A. Gil, Zeolite synthesis from industrial wastes, Microporous Mesoporous Mater., 287(2019), p. 183.

    Article  CAS  Google Scholar 

  12. N.J. Bu, X.M. Liu, S.L. Song, J.H. Liu, Q. Yang, R. Li, F. Zheng, L.H. Yan, Q. Zhen, and J.F. Zhang, Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution, Adv. Powder Technol., 31(2020), No. 7, p. 2699.

    Article  CAS  Google Scholar 

  13. X.P. He, B. Yao, Y. Xia, H. Huang, Y.P. Gan, and W.K. Zhang, Coal fly ash derived zeolite for highly efficient removal of Ni2+ in waste water, Powder Technol., 367(2020), p. 40.

    Article  CAS  Google Scholar 

  14. C. Belviso, State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues, Prog. Energy Combust. Sci., 65(2018), p. 109.

    Article  Google Scholar 

  15. A.M. Cardoso, A. Paprocki, L.S. Ferret, C.M.N. Azevedo, and M. Pires, Synthesis of zeolite Na—P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment, Fuel, 139(2015), p. 59.

    Article  CAS  Google Scholar 

  16. C. Belviso, Ultrasonic vs hydrothermal method: Different approaches to convert fly ash into zeolite. How they affect the stability of synthetic products over time?, Ultrason. Sonochem., 43(2018), p. 9.

    Article  CAS  Google Scholar 

  17. G.Y. Yao, J.J. Lei, X.Y. Zhang, Z.M. Sun, and S.L. Zheng, One-step hydrothermal synthesis of zeolite X powder from natural low-grade diatomite, Materials, 11(2018), No. 6, art. No. 906.

  18. X.B. Li, J.J. Ye, Z.H. Liu, Y.Q. Qiu, L.J. Li, S. Mao, X.C. Wang, and Q. Zhang, Microwave digestion and alkali fusion assisted hydrothermal synthesis of zeolite from coal fly ash for enhanced adsorption of Cd(II) in aqueous solution, J. Cent. South Univ., 25(2018), No. 1, p. 9.

    Article  CAS  Google Scholar 

  19. S.Q. Xu, D.H. Pan, and G.M. Xiao, Enhanced HMF yield from glucose with H—ZSM-5 catalyst in water-tetrahydrofuran/2-butanol/2-methyltetrahydrofuran biphasic systems, J. Cent. South Univ., 26(2019), No. 11, p. 2974.

    Article  CAS  Google Scholar 

  20. E. Erdem, N. Karapinar, and R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci., 280(2004), No. 2, p. 309.

    Article  CAS  Google Scholar 

  21. G.Y. Yao, J.J. Lei, W.Z. Zhang, C.H. Yu, Z.M. Sun, S.L. Zheng, and S. Komarneni, Antimicrobial activity of X zeolite exchanged with Cu2+ and Zn2+ on Escherichia coli and Staphylococcus aureus, Environ. Sci. Pollut. Res., 26(2019), No. 3, p. 2782.

    Article  CAS  Google Scholar 

  22. M. Ren, C.Y. Zhang, Y.L. Wang, and J.J. Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1482.

    Article  CAS  Google Scholar 

  23. Ch. Baerlocher and L.B. McCusker, Database of Zeolite Structures, Structure Commission of the International Zeolite Association, Chicago [2020-11-10]. http://asia.izastructure.org/IZA-SC/ftc_table.php

  24. M. Ahmaruzzaman, A review on the utilization of fly ash, Prog. Energy Combust. Sci., 36(2010), No. 3, p. 327.

    Article  CAS  Google Scholar 

  25. J.L. Chen and X.W. Lu, Synthesis and characterization of zeolites NaA and NaX from coal gangue, J. Mater. Cycles Waste Manage., 20(2018), No. 1, p. 489.

    Article  CAS  Google Scholar 

  26. T.T. Qian and J.H. Li, Synthesis of Na—A zeolite from coal gangue with the in situ crystallization technique, Adv. Powder Technol., 26(2015), No. 1, p. 98.

    Article  CAS  Google Scholar 

  27. J.M. Zhu, S.H. Guo, and X.H. Li, Facile preparation of a SiO2—Al2O3 aerogel using coal gangue as a raw material via an ambient pressure drying method and its application in organic solvent adsorption, Rsc Adv., 5(2015), No. 125, p. 103656.

    Article  CAS  Google Scholar 

  28. Y.X. Guo, K.Z. Yan, L. Cui, F.Q. Cheng, and H.H. Lou, Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction, Int. J. Miner. Process., 131(2014), p. 51.

    Article  CAS  Google Scholar 

  29. S.S. Bukhari, J. Behin, H. Kazemian, and S. Rohani, Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review, Fuel, 140(2015), p. 250.

    Article  CAS  Google Scholar 

  30. S.C. Chelgani, Exploring relationships of gross calorific value and valuable elements with conventional coal properties for North Korean coals, Int. J. Min. Sci. Technol., 29(2019), No. 6, p. 867.

    Article  Google Scholar 

  31. P. Kunecki, R. Panek, M. Wdowin, and W. Franus, Synthesis of faujasite (FAU) and tschernichite (LTA) type zeolites as a potential direction of the development of lime Class C fly ash, Int. J. Miner. Process., 166(2017), p. 69.

    Article  CAS  Google Scholar 

  32. T. Yang, C.Y. Han, H. Liu, L. Yang, D.K. Liu, J. Tang and Y.M. Luo, Synthesis of Na—X zeolite from low aluminum coal fly ash: Characterization and high efficient As(V) removal, Adv. Powder Technol., 30(2019), No. 1, p. 199.

    Article  CAS  Google Scholar 

  33. A. Molina and C. Poole, A comparative study using two methods to produce zeolites from fly ash, Miner. Eng., 17(2004), No. 2, p. 167.

    Article  CAS  Google Scholar 

  34. M. Xiao, X.J. Hu, Y. Gong, D. Gao, P. Zhang, Q.X. Liu, Y. Liu, and M.C. Wang, Solid transformation synthesis of zeolites from fly ash, RSC Adv., 5(2015), No. 122, p. 100743.

    Article  CAS  Google Scholar 

  35. H. Javadian, F. Ghorbani, H.A. Tayebi, and S.H. Asl, Study of the adsorption of Cd(II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies, Arab. J. Chem., 8(2015), No. 6, p. 837.

    Article  CAS  Google Scholar 

  36. K. Ojha, N.C. Pradhan, and A.N. Samanta, Zeolite from fly ash: Synthesis and characterization, Bull. Mater. Sci., 27(2004), No. 6, p. 555.

    Article  CAS  Google Scholar 

  37. J.D. Monzón, A.M. Pereyra, M.S. Conconi, and E.I. Basaldella, Phase transformations during the zeolitization of fly ashes, J. Environ. Chem. Eng., 5(2017), No. 2, p. 1548.

    Article  Google Scholar 

  38. Y.X. Guo, K.Z. Yan, L. Cui, and F.Q. Cheng, Improved extraction of alumina from coal gangue by surface mechanically grinding modification, Powder Technol., 302(2016), p. 33.

    Article  CAS  Google Scholar 

  39. L.J. Zhang, Y. He, P. Lü, J.H. Peng, S.W. Li, K.H. Chen, S.H. Yin, and L.B. Zhang, Comparison of microwave and conventional heating routes for kaolin thermal activation, J. Cent. South Univ., 27(2020), No. 9, p. 2494.

    Article  CAS  Google Scholar 

  40. S. Sivalingam and S. Sen, Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X, Appl. Surf. Sci., 455(2018), p. 903.

    Article  CAS  Google Scholar 

  41. P. Panitchakarn, N. Laosiripojana, N. Viriya-Umpikul, and P. Pavasant, Synthesis of high-purity Na—A and Na—X zeolite from coal fly ash, J. Air Waste Manage. Assoc., 64(2014), No. 5, p. 586.

    Article  CAS  Google Scholar 

  42. X. Querol, N. Moreno, J. C. Umaña, A. Alastuey, E. Hernández, A. López-Soler, and F. Plana, Synthesis of zeolites from coal fly ash: An overview, Int. J. Coal Geol., 50(2002), No. 1–4, p. 413.

    Article  CAS  Google Scholar 

  43. J.L. LaRosa, S. Kwan, and M.W. Grutzeck, Zeolite formation in Class F fly ash blended cement pastes, J. Am. Ceram. Soc., 75(1992), No. 6, p. 1574.

    Article  CAS  Google Scholar 

  44. F. Mondragon, F. Rincon, L. Sierra, J. Escobar, J. Ramirez, and J. Fernandez, New perspectives for coal ash utilization: Synthesis of zeolitic materials, Fuel, 69(1990), No. 2, p. 263.

    Article  CAS  Google Scholar 

  45. G. Steenbruggen and G.G. Hollman, The synthesis of zeolites from fly ash and the properties of the zeolite products, J. Geochem. Explor., 62(1998), No. 1–3, p. 305.

    Article  CAS  Google Scholar 

  46. H. Tanaka, Y. Sakai, and R. Hino, Formation of Na—A and —X zeolites from waste solutions in conversion of coal fly ash to zeolites, Mater. Res. Bull., 37(2002), No. 11, p. 1873.

    Article  CAS  Google Scholar 

  47. Z. Liu, S.Q. Li, L. Li, J.X. Wang, Y. Zhou, and D.M. Wang, One-step high efficiency crystallization of zeolite A from ultra-fine circulating fluidized bed fly ash by hydrothermal synthesis method, Fuel, 257(2019), art. No. 116043.

  48. Y. Liu, G.D. Wang, L. Wang, X.L. Li, Q. Luo, and P. Na, Zeolite P synthesis based on fly ash and its removal of Cu(II) and Ni(II) ions, Chin. J. Chem. Eng., 27(2019), No. 2, p. 341.

    Article  CAS  Google Scholar 

  49. X.S. Hu, J. Bai, J.Z. Wang, C.P. Li, and W. Xu, Preparation of 4A-zeolite-based Ag nanoparticle composite catalyst and research of the catalytic properties, RSC Adv., 5(2015), No. 4, p. 2968.

    Article  CAS  Google Scholar 

  50. J.M. Zhou, F. Zheng, H. Li, J. Wang, N.J. Bu, P.F. Hu, J.M. Gao, Q. Zhen, S. Bashir, and J.L. Liu, Optimization of post-treatment variables to produce hierarchical porous zeolites from coal gangue to enhance adsorption performance, Chem. Eng. J., 381(2020), art. No. 122698.

  51. J.D.C. Izidoro, D.A. Fungaro, F.S. dos Santos, and S.B. Wang, Characteristics of Brazilian coal fly ashes and their synthesized zeolites, Fuel Process. Technol., 97(2012), p. 38.

    Article  CAS  Google Scholar 

  52. B. Szala, T. Bajda, J. Matusik, K. Zięba, and B. Kijak, BTX sorption on Na—P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA, Microporous Mesoporous Mater., 202(2015), p. 115.

    Article  CAS  Google Scholar 

  53. M. Inada, Y. Eguchi, N. Enomoto, and J. Hojo, Synthesis of zeolite from coal fly ashes with different silica—alumina composition, Fuel, 84(2005), No. 2–3, p. 299.

    Article  CAS  Google Scholar 

  54. C.A. Ríos R, C.D. Williams, and C.L. Roberts, A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites, Fuel, 88(2009), No. 8, p. 1403.

    Article  Google Scholar 

  55. A. Shoumkova and V. Stoyanova, Zeolites formation by hydrothermal alkali activation of coal fly ash from thermal power station “Maritsa 3”, Bulgaria, Fuel, 103(2013), p. 533.

    Article  CAS  Google Scholar 

  56. N. Koukouzas, C. Vasilatos, G. Itskos, I. Mitsis, and A. Moutsatsou, Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials, J. Hazard. Mater., 173(2010), No. 1–3, p. 581.

    Article  CAS  Google Scholar 

  57. J. Xie, Z. Wang, D.Y. Wu, and H.N. Kong, Synthesis and properties of zeolite/hydrated iron oxide composite from coal fly ash as efficient adsorbent to simultaneously retain cationic and anionic pollutants from water, Fuel, 116(2014), p. 71.

    Article  CAS  Google Scholar 

  58. N. Murayama, T. Takahashi, K. Shuku, H.H. Lee, and J. Shibata, Effect of reaction temperature on hydrothermal syntheses of potassium type zeolites from coal fly ash, Int. J. Miner. Process., 87(2008), No. 3–4, p. 129.

    Article  CAS  Google Scholar 

  59. J.C. Wang, D.K. Li, F.L. Ju, L.N. Han, L.P. Chang, and W.R. Bao, Supercritical hydrothermal synthesis of zeolites from coal fly ash for mercury removal from coal derived gas, Fuel Process. Technol., 136(2015), p. 96.

    Article  CAS  Google Scholar 

  60. A. Grela, M. Hebda, M. Lach, and J. Mikula, Thermal behavior and physical characteristics of synthetic zeolite from CFB-coal fly ash, Microporous Mesoporous Mater., 220(2016), p. 155.

    Article  CAS  Google Scholar 

  61. M. Gross-Lorgouilloux, M. Soulard, P. Caullet, J. Patarin, E. Moleiro, and I. Saude, Conversion of coal fly ashes into faujasite under soft temperature and pressure conditions: Influence of additional silica, Microporous Mesoporous Mater., 127(2010), No. 1–2, p. 41.

    Article  CAS  Google Scholar 

  62. M. Gross-Lorgouilloux, P. Caullet, M. Soulard, J. Patarin, E. Moleiro, and I. Saude, Conversion of coal fly ashes into faujasite under soft temperature and pressure conditions. Mechanisms of crystallisation, Microporous Mesoporous Mater., 131(2010), No. 1–3, p. 407.

    Article  CAS  Google Scholar 

  63. Y. Kobayashi, F. Ogata, T. Nakamura, and N. Kawasaki, Synthesis of novel zeolites produced from fly ash by hydrothermal treatment in alkaline solution and its evaluation as an adsorbent for heavy metal removal, J. Environ. Chem. Eng., 8(2020), No. 2, art. No. 103687.

  64. L. Zhou, Y.L. Chen, X.H. Zhang, F.M. Tian, and Z.N. Zu, Zeolites developed from mixed alkali modified coal fly ash for adsorption of volatile organic compounds, Mater. Lett., 119(2014), p. 140.

    Article  CAS  Google Scholar 

  65. Y.Y. Ji, Y.Q. Wang, B. Xie, and F.S. Xiao, Zeolite seeds: Third type of structure directing agents in the synthesis of zeolites, Comments Inorg. Chem., 36(2016), No. 1, p. 1.

    Article  CAS  Google Scholar 

  66. J.F. Han, X.T. Jin, C.F. Song, Y.L. Bi, Q.L. Liu, C.X. Liu, N. Ji, X.B. Lu, D.G. Ma, and Z.G. Li, Rapid synthesis and NH3-SCR activity of SSZ-13 zeolite via coal gangue, Green Chem., 22(2020), No. 1, p. 219.

    Article  CAS  Google Scholar 

  67. M.M. Liu, L. Hou, B.D. Xi, Y. Zhao, and X.F. Xia, Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash, Appl. Surf. Sci., 273(2013), p. 706.

    Article  CAS  Google Scholar 

  68. Y.G. Chen, S.L. Cong, Q.Q. Wang, H.J. Han, J. Lu, Y. Kang, W. Kang, H.Y. Wang, S.Y. Han, H. Song, and J.J. Zhang, Optimization of crystal growth of sub-micron ZSM-5 zeolite prepared by using Al(OH)3 extracted from fly ash as an aluminum source, J. Hazard. Mater., 349(2018), p. 18.

    Article  CAS  Google Scholar 

  69. R.N.M. Missengue, P. Losch, G. Sedres, N.M. Musyoka, O.O. Fatoba, B. Louis, P. Pale, and L.F. Petrik, Transformation of South African coal fly ash into ZSM-5 zeolite and its application as an MTO catalyst, C. R. Chim., 20(2017), No. 1, p. 78.

    Article  CAS  Google Scholar 

  70. X.Y. Ren, S.J. Liu, R.Y. Qu, L.F. Xiao, P. Hu, H. Song, W.H. Wu, C.H. Zheng, X.C. Wu, and X. Gao, Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption, Microporous Mesoporous Mater., 295(2020), art. No. 109940.

  71. N. Shigemoto, H. Hayashi, and K. Miyaura, Selective formation of Na—X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction, J. Mater. Sci., 28(1993), No. 17, p. 4781.

    Article  CAS  Google Scholar 

  72. F. Fotovat, H. Kazemian, and M. Kazemeini, Synthesis of Na—A and faujasitic zeolites from high silicon fly ash, Mater. Res. Bull., 44(2009), No. 4, p. 913.

    Article  CAS  Google Scholar 

  73. H. Kazemian, Z. Naghdali, T. Ghaffari Kashani, and F. Farhadi, Conversion of high silicon fly ash to Na—P1 zeolite: Alkaline fusion followed by hydrothermal crystallization, Adv. Powder Technol., 21(2010), No. 3, p. 279.

    Article  CAS  Google Scholar 

  74. A. Medina, P. Gamero, J.M. Almanza, A. Vargas, A. Montoya, G. Vargas, and M. Izquierdo, Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic(V) adsorption, J. Hazard. Mater., 181(2010), No. 1–3, p. 91.

    Article  CAS  Google Scholar 

  75. Q.L. Ge, M. Moeen, Q. Tian, J.J. Xu, and K.Q. Feng, Highly effective removal of Pb2+ in aqueous solution by Na—X zeolite derived from coal gangue, Environ. Sci. Pollut. Res., 27(2020), No. 7, p. 7398.

    Article  CAS  Google Scholar 

  76. C. Belviso, F. Cavalcante, S. Di Gennaro, A. Lettino, A. Palma, P. Ragone, and S. Fiore, Removal of Mn from aqueous solution using fly ash and its hydrothermal synthetic zeolite, J. Environ. Manage., 137(2014), p. 16.

    Article  CAS  Google Scholar 

  77. C. Belviso, L.C. Giannossa, F.J. Huertas, A. Lettino, A. Mangone, and S. Fiore, Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures, Microporous Mesoporous Mater., 212(2015), p. 35.

    Article  CAS  Google Scholar 

  78. I.V. Joseph, L. Tosheva, and A.M. Doyle, Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash, J. Environ. Chem. Eng., 8(2020), No. 4, art. No. 103895.

  79. G. Verrecchia, L. Cafiero, B. de Caprariis, A. Dell’Era, I. Pettiti, R. Tuffi, and M. Scarsella, Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption, Fuel, 276(2020), art. No. 118041.

  80. L.Y. Yang, X.M. Qian, P. Yuan, H. Bai, T. Miki, F.X. Men, H. Li, and T. Nagasaka, Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3, J. Clean. Prod., 212(2019), p. 250.

    Article  CAS  Google Scholar 

  81. J.D.C. Izidoro, D.A. Fungaro, J.E. Abbott, and S.B. Wang, Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems, Fuel, 103(2013), p. 827.

    Article  CAS  Google Scholar 

  82. V.K. Jha, M. Nagae, M. Matsuda, and M. Miyake, Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems, J. Environ. Manage., 90(2009), No. 8, p. 2507.

    Article  CAS  Google Scholar 

  83. J.L. Chen and X.W. Lu, Equilibrium and kinetics studies of Cd(II) sorption on zeolite NaX synthesized from coal gangue, J. Water Reuse Desalin., 8(2018), No. 1, p. 94.

    Article  CAS  Google Scholar 

  84. Z.T. Yao, M.S. Xia, Y. Ye, and L. Zhang, Synthesis of zeolite Li—ABW from fly ash by fusion method, J. Hazard. Mater., 170(2009), No. 2–3, p. 639.

    Article  CAS  Google Scholar 

  85. V. Berkgaut and A. Singer, High capacity cation exchanger by hydrothermal zeolitization of coal fly ash, Appl. Clay Sci., 10(1996), No. 5, p. 369.

    Article  CAS  Google Scholar 

  86. N.M. Musyoka, L. Petrik, and E. Hums, Synthesis of zeolite A, X and P from a South African coal fly ash, Adv. Mater. Res., 512–515(2012), p. 1757.

    Article  Google Scholar 

  87. N. Jusoh, Y.F. Yeong, M. Mohamad, K.K. Lau, and A. M Shariff, Rapid-synthesis of zeolite T via sonochemical-assisted hydrothermal growth method, Ultrason. Sonochem., 34(2017), p. 273.

    Article  CAS  Google Scholar 

  88. J.F. Han, Y. Ha, M.Y. Guo, P.P. Zhao, Q.L. Liu, C.X. Liu, C.F. Song, N. Ji, X.B. Lu, D.G. Ma, and Z.G. Li, Synthesis of zeolite SSZ-13 from coal gangue via ultrasonic pretreatment combined with hydrothermal growth method, Ultrason. Sonochem., 59(2019), art. No. 104703.

  89. S. Sivalingam and S. Sen, Swift sono-hydrothermal synthesis of pure NaX nanocrystals with improved sorption capacity from industrial resources, Appl. Surf. Sci., 463(2019), p. 190.

    Article  CAS  Google Scholar 

  90. T. Aldahri, J. Behin, H. Kazemian, and S. Rohani, Synthesis of zeolite Na—P from coal fly ash by thermo-sonochemical treatment, Fuel, 182(2016), p. 494.

    Article  CAS  Google Scholar 

  91. S. Boycheva, I. Marinov, S. Miteva, and D. Zgureva, Conversion of coal fly ash into nanozeolite Na—X by applying ultrasound assisted hydrothermal and fusion-hydrothermal alkaline activation, Sustainable Chem. Pharm., 15(2020), art. No. 100217.

  92. X. Querol, A. Alastuey, A. López-Soler, F. Plana, J.M. Andrés, R. Juan, P. Ferrer, and C.R. Ruiz, A fast method for recycling fly ash: Microwave-assisted zeolite synthesis, Environ. Sci. Technol., 31(1997), No. 9, p. 2527.

    Article  CAS  Google Scholar 

  93. K. Fukui, K. Kanayama, T. Yamamoto, and H. Yoshida, Effects of microwave irradiation on the crystalline phase of zeolite synthesized from fly ash by hydrothermal treatment, Adv. Powder Technol., 18(2007), No. 4, p. 381.

    Article  CAS  Google Scholar 

  94. M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, and J. Hojo, Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process, Fuel, 84(2005), No. 12–13, p. 1482.

    CAS  Google Scholar 

  95. J.K. Kim and H.D. Lee, Effects of step change of heating source on synthesis of zeolite 4A from coal fly ash, J. Ind. Eng. Chem., 15(2009), No. 5, p. 736.

    Article  CAS  Google Scholar 

  96. G.G. Hollman, G. Steenbruggen, and M. Janssen-Jurkovičová, A two-step process for the synthesis of zeolites from coal fly ash, Fuel, 78(1999), No. 10, p. 1225.

    Article  CAS  Google Scholar 

  97. H. Tanaka, H. Eguchi, S. Fujimoto, and R. Hino, Two-step process for synthesis of a single phase Na—A zeolite from coal fly ash by dialysis, Fuel, 85(2006), No. 10–11, p. 1329.

    Article  CAS  Google Scholar 

  98. C.F. Wang, J.S. Li, X. Sun, L.J. Wang, and X.Y. Sun, Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals, J. Environ. Sci., 21(2009), No. 1, p. 127.

    Article  Google Scholar 

  99. H. Tanaka, A. Fujii, S. Fujimoto, and Y. Tanaka, Microwave-assisted two-step process for the synthesis of a single-phase Na—A zeolite from coal fly ash, Adv. Powder Technol., 19(2008), No. 1, p. 83.

    Article  CAS  Google Scholar 

  100. A. Iqbal, H. Sattar, R. Haider, and S. Munir, Synthesis and characterization of pure phase zeolite 4A from coal fly ash, J. Cleaner Prod., 219(2019), p. 258.

    Article  CAS  Google Scholar 

  101. V.L.V. Fallavena, M. Pires, S.F. Ferrarini, and A.P.B. Silveira, Evaluation of zeolite/backfill blend for acid mine drainage remediation in coal mine, Energy Fuels, 32(2018), No. 2, p. 2019.

    Article  CAS  Google Scholar 

  102. M.R. El-Naggar, A.M. El-Kamash, M.I. El-Dessouky, and A.K. Ghonaim, Two-step method for preparation of NaA—X zeolite blend from fly ash for removal of cesium ions, J. Hazard. Mater., 154(2008), No. 1–3, p. 963.

    Article  CAS  Google Scholar 

  103. S.S. Bukhari, S. Rohani, and H. Kazemian, Effect of ultrasound energy on the zeolitization of chemical extracts from fused coal fly ash, Ultrason. Sonochem., 28(2016), p. 47.

    Article  CAS  Google Scholar 

  104. Y.N. Zhang, Y.G. Chen, W. Kang, H.J. Han, H. Song, C.L. Zhang, H.Y. Wang, X.Q. Yang, X.Z. Gong, C.X. Zhai, J.T. Deng, and L.L. Ai, Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment, J. Cleaner Prod., 258(2020), art. No. 120736.

  105. M. Park, C.L. Choi, W.T. Lim, M.C. Kim, J. Choi, and N.H. Heo, Molten-salt method for the synthesis of zeolitic materials: I. Zeolite formation in alkaline molten-salt system, Microporous Mesoporous Mater., 37(2000), No. 1–2, p. 81.

    Article  CAS  Google Scholar 

  106. M. Park, C.L. Choi, W.T. Lim, M.C. Kim, J. Choi, and N.H. Heo, Molten-salt method for the synthesis of zeolitic materials: II. Characterization of zeolitic materials, Microporus Mesoporous Mater., 37(2000), No. 1–2, p. 91.

    Article  CAS  Google Scholar 

  107. Y. Liu, C.J. Yan, J.J. Zhao, Z.H. Zhang, H.Q. Wang, S. Zhou, and L.M. Wu, Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water, J. Cleaner Prod., 202(2018), p. 11.

    Article  CAS  Google Scholar 

  108. R.K. Vempati, R. Borade, R.S. Hegde, and S. Komarneni, Template free ZSM-5 from siliceous rice hull ash with varying C contents, Microporous Mesoporous Mater., 93(2006), No. 1–3, p. 134.

    Article  CAS  Google Scholar 

  109. S. Babel and T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: A review, J. Hazard. Mater., 97(2003), No. 1–3, p. 219.

    Article  CAS  Google Scholar 

  110. X.W. Lu, D.Q. Shi, and J.L. Chen, Sorption of Cu2+ and Co2+ using zeolite synthesized from coal gangue: isotherm and kinetic studies, Environ. Earth Sci., 76(2017), No. 17, p. 591.

    Article  Google Scholar 

  111. Y.M. Sui, D.Y. Wu, D.L. Zhang, X.Y. Zheng, Z.B. Hu, and H.N. Kong, Factors affecting the sorption of trivalent chromium by zeolite synthesized from coal fly ash, J. Colloid Interface Sci., 322(2008), No. 1, p. 13.

    Article  CAS  Google Scholar 

  112. D.Y. Wu, Y.M. Sui, S.B. He, X.Z. Wang, C.J. Li, and H.N. Kong, Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash, J. Hazard. Mater., 155(2008), No. 3, p. 415.

    Article  CAS  Google Scholar 

  113. M. Nascimento, P.S.M. Soares, and V.P. de Souza, Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method, Fuel, 88(2009), No. 9, p. 1714.

    Article  CAS  Google Scholar 

  114. R. Apiratikul and P. Pavasant, Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash, Chem. Eng. J., 144(2008), No. 2, p. 245.

    Article  CAS  Google Scholar 

  115. M. Visa, Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment, Powder Technol., 294(2016), p. 338.

    Article  CAS  Google Scholar 

  116. Z. Tauanov, P.E. Tsakiridis, S.V. Mikhalovsky, and V.J. Inglezakis, Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water, J. Environ. Manage., 224(2018), p. 164.

    Article  CAS  Google Scholar 

  117. T.M. Mokgehle, H. Richards, L. Chimuka, W.M. Gitari, and N.T. Tavengwa, Sulphates removal from AMD using CFA hydrothermally treated zeolites in column studies, Miner. Eng., 141(2019), art. No. 105851.

  118. C.F. Wang, J.S. Li, L.J. Wang, X.Y. Sun, and J.J. Huang, Adsorption of dye from wastewater by zeolites synthesized from fly ash: Kinetic and equilibrium studies, Chin. J. Chem. Eng., 17(2009), No. 3, p. 513.

    Article  Google Scholar 

  119. M. Visa and A.M. Chelaru, Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment, Appl. Surf. Sci., 303(2014), p. 14.

    Article  CAS  Google Scholar 

  120. G. Atun, G. Hisarli, A.E. Kurtoglu, and N. Ayar, A comparison of basic dye adsorption onto zeolitic materials synthesized from fly ash, J. Hazard. Mater., 187(2011), No. 1–3, p. 562.

    Article  CAS  Google Scholar 

  121. S. Sivalingam and S. Sen, Efficient removal of textile dye using nanosized fly ash derived zeolite-x: Kinetics and process optimization study, J. Taiwan Inst. Chem. Eng., 96(2019), p. 305.

    Article  CAS  Google Scholar 

  122. J.G. Murnane, R.B. Brennan, M.G. Healy, and O. Fenton, Use of zeolite with alum and polyaluminum chloride amendments to mitigate runoff losses of phosphorus, nitrogen, and suspended solids from agricultural wastes applied to grassed soils, J. Environ. Qual., 44(2015), No. 5, p. 1674.

    Article  CAS  Google Scholar 

  123. X.D. Ji, M.L. Zhang, Y.J. Wang, Y.C. Song, Y.Y. Ke, and Y.Q. Wang, Immobilization of ammonium and phosphate in aqueous solution by zeolites synthesized from fly ashes with different compositions, J. Ind. Eng. Chem., 22(2015), p. 1.

    Article  Google Scholar 

  124. L. Bandura, D. Kołodyńska, and W. Franus, Adsorption of BTX from aqueous solutions by Na—P1 zeolite obtained from fly ash, Process. Saf. Environ. Prot., 109(2017), p. 214.

    Article  CAS  Google Scholar 

  125. R. Juan, S. Hernández, J.M. Andrés, and C. Ruiz, Ion exchange uptake of ammonium in wastewater from a Sewage Treatment Plant by zeolitic materials from fly ash, J. Hazard. Mater., 161(2009), No. 2–3, p. 781.

    Article  CAS  Google Scholar 

  126. X.Y. Chen, K. Wendell, J. Zhu, J.L. Li, X.X. Yu, and Z.J. Zhang, Synthesis of nano-zeolite from coal fly ash and its potential for nutrient sequestration from anaerobically digested swine wastewater, Bioresour. Technol., 110(2012), p. 79.

    Article  CAS  Google Scholar 

  127. Y. Luna, E. Otal, L.F. Vilches, J. Vale, X. Querol, and C. Fernández Pereira, Use of zeolitised coal fly ash for landfill leachate treatment: A pilot plant study, Waste Manage., 27(2007), No. 12, p. 1877.

    Article  CAS  Google Scholar 

  128. W. Feng, Z.J. Wan, J. Daniels, Z.K. Li, G.K. Xiao, J.L. Yu, D. Xu, H. Guo, D.K. Zhang, E.F. May, and G. Li, Synthesis of high quality zeolites from coal fly ash: Mobility of hazardous elements and environmental applications, J. Cleaner Prod., 202(2018), p. 390.

    Article  CAS  Google Scholar 

  129. T.M. Mokgehle, W.M. Gitari, and N.T. Tavengwa, Synthesis of di-carboxylic acid functionalized zeolites from coal fly ash for Cd(II) removal from acid mine drainage using column studies approach, J. Environ. Chem. Eng., 7(2019), No. 6, art. No. 103473.

  130. G.I. Supelano, J.A. Gómez Cuaspud, L.C. Moreno-Aldana, C. Ortiz, C.A. Trujillo, C.A. Palacio, C.A. Parra Vargas, and J.A. Mejía Gómez, Synthesis of magnetic zeolites from recycled fly ash for adsorption of methylene blue, Fuel, 263(2020), art. No. 116800.

  131. L.D. Lin, Y. Lin, C.J. Li, D.Y. Wu, and H.N. Kong, Synthesis of zeolite/hydrous metal oxide composites from coal fly ash as efficient adsorbents for removal of methylene blue from water, Int. J. Miner. Process., 148(2016), p. 32.

    Article  CAS  Google Scholar 

  132. B.H. Zhang, D.Y. Wu, C. Wang, S.B. He, Z.J. Zhang, and H.N. Kong, Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment, J. Environ. Sci., 19(2007), No. 5, p. 540.

    Article  CAS  Google Scholar 

  133. D. Wood, S. Shaw, T. Cawte, E. Shanen, and B. van Heyst, An overview of photocatalyst immobilization methods for air pollution remediation, Chem. Eng. J., 391(2020), art. No. 123490.

  134. Y.S. Wang, T. Du, X. Fang, D. Meng, G. Li, and L.Y. Liu, Adsorption of carbon dioxide and water vapor on fly-ash based ETS-10, Korean J. Chem. Eng., 35(2018), No. 8, p. 1642.

    Article  CAS  Google Scholar 

  135. G.N. Muriithi, L.F. Petrik, and F.J. Doucet, Synthesis, characterisation and CO2 adsorption potential of NaA and NaX zeolites and hydrotalcite obtained from the same coal fly ash, J. CO2 Util., 36(2020), p. 220.

    Article  CAS  Google Scholar 

  136. K.M. Lee and Y.M. Jo, Synthesis of zeolite from waste fly ash for adsorption of CO2, J. Mater. Cycles Waste Manage., 12(2010), No. 3, p. 212.

    Article  CAS  Google Scholar 

  137. A. Ściubidło and I. Majchrzak-Kucęba, Exhaust gas purification process using fly ash-based sorbents, Fuel, 258(2019), art. No. 116126.

  138. G. Li, B.D. Wang, H.Y. Wang, J. Ma, W.Q. Xu, Y.L. Li, Y.F. Han, and Q. Sun, Fe and/or Mn oxides supported on fly ashderived SBA-15 for low-temperature NH3-SCR, Catal. Commun., 108(2018), p. 82.

    Article  CAS  Google Scholar 

  139. S. Boycheva, D. Zgureva, M. Václavíková, Y. Kalvachev, H. Lazarova, and M. Popova, Studies on non-modified and copper-modified coal ash zeolites as heterogeneous catalysts for VOCs oxidation, J. Hazard. Mater., 361(2019), p. 374.

    Article  CAS  Google Scholar 

  140. M. Popova, S. Boycheva, H. Lazarova, D. Zgureva, K. Lázár, and Á. Szegedi, VOC oxidation and CO2 adsorption on dual adsorption/catalytic system based on fly ash zeolites, Catal. Today, 357(2020), p. 518.

    Article  CAS  Google Scholar 

  141. Z.Y. Li, Z.W. Ma, T.J. van der Kuijp, Z.W. Yuan, and L. Huang, A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment, Sci. Total Environ., 468–469(2014), p. 843.

    Article  Google Scholar 

  142. Y. Hamid, L. Tang, M.I. Sohail, X.R. Cao, B. Hussain, M.Z. Aziz, M. Usman, Z.L. He, and X.E. Yang, An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain, Sci. Total Environ., 660(2019), p. 80.

    Article  CAS  Google Scholar 

  143. X. Querol, A. Alastuey, N. Moreno, E. Alvarez-Ayuso, A. García-Sánchez, J. Cama, C. Ayora, and M. Simón, Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash, Chemosphere, 62(2006), No. 2, p. 171.

    Article  CAS  Google Scholar 

  144. R. Terzano, M. Spagnuolo, L. Medici, F. Tateo, and P. Ruggiero, Zeolite synthesis from pre-treated coal fly ash in presence of soil as a tool for soil remediation, Appl. Clay Sci., 29(2005), No. 2, p. 99.

    Article  CAS  Google Scholar 

  145. P. Horta-Fraijo, E. Smolentseva, A. Simakov, M. José-Yacaman, and B. Acosta, Ag nanoparticles in A4 zeolite as efficient catalysts for the 4-nitrophenol reduction, Microporous Mesoporous Mater., 312(2021), art. No. 110707.

  146. N. Czuma, K. Zarębska, M. Motak, M.E. Gálvez, and P. Da Costa, Ni/zeolite X derived from fly ash as catalysts for CO2 methanation, Fuel, 267(2020), art. No. 117139.

  147. M.C. Manique, L.V. Lacerda, A.K. Alves, and C.P. Bergmann, Biodiesel production using coal fly ash-derived sodalite as a heterogeneous catalyst, Fuel, 190(2017), p. 268.

    Article  CAS  Google Scholar 

  148. N.M. Musyoka, J.W. Ren, H.W. Langmi, B.C. North, and M. Mathe, A comparison of hydrogen storage capacity of commercial and fly ash-derived zeolite X together with their respective templated carbon derivatives, Int. J. Hydrogen Energy, 40(2015), No. 37, p. 12705.

    Article  CAS  Google Scholar 

  149. J.M. Lim, J. Park, J.T. Park, and S. Bae, Preparation of quasi-solid-state electrolytes using a coal fly ash derived zeolite—X and —A for dye-sensitized solar cells, J. Ind. Eng. Chem., 71(2019), p. 378.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Nos. 2020YFC1806504 and 2019YFC1904903) and the Yue Qi Young Scholar Project, China University of Mining &Technology (Beijing) (No. 2017QN12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Sun.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, C., Zheng, S. et al. A review of the synthesis and application of zeolites from coal-based solid wastes. Int J Miner Metall Mater 29, 1–21 (2022). https://doi.org/10.1007/s12613-021-2256-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2256-8

Keywords

Navigation