Abstract
Synbiotics are known to exert multiple beneficial effects, including anti-inflammatory and antioxidant actions. The aim of this study was to evaluate the effects of synbiotic supplementation on carotid intima-media thickness (CIMT), biomarkers of inflammation, and oxidative stress in people with overweight, diabetes, and coronary heart disease (CHD). This randomized, double-blind, placebo-controlled trial was conducted and involved 60 people with overweight, diabetes, and CHD, aged 50–85 years old. Participants were randomly allocated into two groups to take either synbiotic supplements containing three probiotic bacteria spices Lactobacillus acidophilus strain T16 (IBRC-M10785), Lactobacillus casei strain T2 (IBRC-M10783), and Bifidobacterium bifidum strain T1 (IBRC-M10771) (2 × 109 CFU/g each) plus 800 mg inulin or placebo (n = 30 each group) for 12 weeks. Fasting blood samples were taken at baseline and after the 12-week intervention period to determine metabolic variables. After the 12-week intervention, compared with the placebo, synbiotic supplementation significantly reduced serum high-sensitivity C-reactive protein (hs-CRP) (− 3101.7 ± 5109.1 vs. − 6.2 ± 3163.6 ng/mL, P = 0.02), plasma malondialdehyde (MDA) (− 0.6 ± 1.0 vs. − 0.1 ± 0.3 μmol/L, P = 0.01), and significantly increased nitric oxide (NO) levels (+ 7.8 ± 10.3 vs. − 3.6 ± 6.9 μmol/L, P < 0.001). We did not observe any significant changes of synbiotic supplementation on other biomarkers of oxidative stress and CIMT levels. Overall, synbiotic supplementation for 12 weeks among people with overweight, diabetes, and CHD had beneficial effects on serum hs-CRP, plasma NO, and MDA levels; however, it did not have any effect on other biomarkers of oxidative stress and CIMT levels.
Similar content being viewed by others
Change history
08 September 2020
Editor's Note: The Editor-in-Chief is currently investigating this article as concerns have been raised about integrity of the clinical trial reported here. There is also an ongoing investigation by the Iranian National Committee for Ethics in Biomedical Researches. Further editorial action will be taken as appropriate once the investigation into the concerns is complete and all parties have been given an opportunity to respond in full.
References
Mathieu P, Poirier P, Pibarot P, Lemieux I, Després J-P (2009) Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension 53:577–584. https://doi.org/10.1161/HYPERTENSIONAHA.108.110320
Cordero A, Lopez-Palop R, Carrillo P, Moreno-Arribas J, Bertomeu-Gonzalez V, Frutos A, Garcia-Carrilero M, Gunturiz C, Bertomeu-Martinez V (2016) Comparison of long-term mortality for cardiac diseases in patients with versus without diabetes mellitus. Am J Cardiol 117:1088–1094. https://doi.org/10.1016/j.amjcard.2015.12.057
Lewis CE, McTigue KM, Burke LE, Poirier P, Eckel RH, Howard BV, Allison DB, Kumanyika S, Pi-Sunyer FX (2009) Mortality, health outcomes, and body mass index in the overweight range: a science advisory from the American Heart Association. Circulation 119:3263–3271. https://doi.org/10.1161/CIRCULATIONAHA.109.192574
Bayanfar Z, Sadeghi M, Heidari R, Gharipour M, Talaie M, Sedaghat A (2014) Carotid intima-media thickness and plasma fibrinogen among subjects with metabolic syndrome: Isfahan cohort study, Iran. ARYA Atheroscler 10:238–243
Reinehr T, Wunsch R, Putter C, Scherag A (2013) Relationship between carotid intima-media thickness and metabolic syndrome in adolescents. J Pediatr 163:327–332. https://doi.org/10.1016/j.jpeds.2013.01.032
Boaz M, Chernin G, Schwartz I et al (2013) C-reactive protein and carotid and femoral intima media thickness: predicting inflammation. Clin Nephrol 80:449–455. https://doi.org/10.5414/CN108067
Mangili A, Polak JF, Quach LA, Gerrior J, Wanke CA (2011) Markers of atherosclerosis and inflammation and mortality in patients with HIV infection. Atherosclerosis 214:468–473. https://doi.org/10.1016/j.atherosclerosis.2010.11.013
Akram Kooshki A, Tofighiyan T, Rakhshani MH (2015) Effects of synbiotics on inflammatory markers in patients with type 2 diabetes mellitus. Glob J Health Sci 7:1–5. https://doi.org/10.5539/gjhs.v7n7p1
Ahmadi S, Jamilian M, Tajabadi-Ebrahimi M, Jafari P, Asemi Z (2016) The effects of synbiotic supplementation on markers of insulin metabolism and lipid profiles in gestational diabetes: a randomised, double-blind, placebo-controlled trial. Br J Nutr 116:1394–1401. https://doi.org/10.1017/S0007114516003457
Mofidi F, Yari Z, Poustchi H, Merat S, Nourinayyer B, Malekzadeh R, Hekmatdoost A (2016) Effects of synbiotics supplementation in lean patients with nonalcoholic fatty liver disease: study protocol of a pilot randomized double-blind clinical trial. Arch Iran Med 19:282–284
Ebrahimi ZS, Nasli-Esfahani E, Nadjarzade A, Mozaffari-Khosravi H (2017) Effect of symbiotic supplementation on glycemic control, lipid profiles and microalbuminuria in patients with non-obese type 2 diabetes: a randomized, double-blind, clinical trial. J Diabetes Metab Disord 16:23. https://doi.org/10.1186/s40200-017-0304-8
Bahmani F, Tajadadi-Ebrahimi M, Kolahdooz F, Mazouchi M, Hadaegh H, Jamal AS, Mazroii N, Asemi S, Asemi Z (2016) The consumption of synbiotic bread containing lactobacillus sporogenes and inulin affects nitric oxide and malondialdehyde in patients with type 2 diabetes mellitus: randomized, double-blind, placebo-controlled trial. J Am Coll Nutr 35:506–513
Tabrizi R, Moosazadeh M, Lankarani KB, Akbari M, Heydari ST, Kolahdooz F, Asemi Z (2017) The effects of synbiotic supplementation on glucose metabolism and lipid profiles in patients with diabetes: a systematic review and meta-analysis of randomized controlled trials. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-017-9299-1
Memarrast F, Ghafouri-Fard S, Kolivand S, Jafary-Nodooshan S, Neyazi N, Sadroddiny E, Motevaseli E (2017) Comparative evaluation of probiotics effects on plasma glucose, lipid, and insulin levels in streptozotocin-induced diabetic rats. Diabetes Metab Res Rev. https://doi.org/10.1002/dmrr.2912
Mazloom Z, Yousefinejad A, Dabbaghmanesh MH (2013) Effect of probiotics on lipid profile, glycemic control, insulin action, oxidative stress, and inflammatory markers in patients with type 2 diabetes: a clinical trial. Iran J Med Sci 38:38–43
D'Souza A, Fordjour L, Ahmad A, Cai C, Kumar D, Valencia G, Aranda JV, Beharry KD (2010) Effects of probiotics, prebiotics, and synbiotics on messenger RNA expression of caveolin-1, NOS, and genes regulating oxidative stress in the terminal ileum of formula-fed neonatal rats. Pediatr Res 67:526–531. https://doi.org/10.1203/PDR.0b013e3181d4ff2b
Matthews GM, Howarth GS, Butler RN (2007) Short-chain fatty acid modulation of apoptosis in the Kato III human gastric carcinoma cell line. Cancer Biol Ther 6:1051–1057
American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81–S90
Welles CC, Whooley MA, Karumanchi SA, Hod T, Thadhani R, Berg AH, Ix JH, Mukamal KJ (2014) Vitamin D deficiency and cardiovascular events in patients with coronary heart disease: data from the Heart and Soul Study. Am J Epidemiol 179:1279–1287. https://doi.org/10.1093/aje/kwu059
Soccol CR, Vandenberghe LPS, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JDD, Pandey A, Thomaz-Soccol V (2010) The potential of probiotics: a review. Food Technol Biotechnol 48:413–434
Mohammadi AA, Jazayeri S, Khosravi-Darani K, Solati Z, Mohammadpour N, Asemi Z, Adab Z, Djalali M, Tehrani-Doost M, Hosseini M, Eghtesadi S (2016) The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr Neurosci 19:387–395
Benton D, Williams C, Brown A (2007) Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 61:355–361
Tatsch E, Bochi GV, Pereira Rda S, Kober H, Agertt VA, de Campos MM, Gomes P, Duarte MM, Moresco RN (2011) A simple and inexpensive automated technique for measurement of serum nitrite/nitrate. Clin Biochem 44:348–350. https://doi.org/10.1016/j.clinbiochem.2010.12.011
Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76
Beutler E, Gelbart T (1985) Plasma glutathione in health and in patients with malignant disease. J Lab Clin Med 105:581–584
Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540
Paneni F, Costantino S, Cosentino F (2014) Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep 16:419. https://doi.org/10.1007/s11883-014-0419-z
Cheng CP, Tsai SW, Chiu CP, Pan TM, Tsai TY (2013) The effect of probiotic-fermented soy milk on enhancing the NO-mediated vascular relaxation factors. J Sci Food Agric 93:1219–1225. https://doi.org/10.1002/jsfa.5880
Asemi Z, Khorrami-Rad A, Alizadeh SA, Shakeri H, Esmaillzadeh A (2014) Effects of synbiotic food consumption on metabolic status of diabetic patients: a double-blind randomized cross-over controlled clinical trial. Clin Nutr 33:198–203. https://doi.org/10.1016/j.clnu.2013.05.015
Neto JV, de Melo CM, Ribeiro SM (2013) Effects of three-month intake of synbiotic on inflammation and body composition in the elderly: a pilot study. Nutrients 5:1276–1286. https://doi.org/10.3390/nu5041276
Styskal J, Van Remmen H, Richardson A, Salmon AB (2012) Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic Biol Med 52:46–58. https://doi.org/10.1016/j.freeradbiomed.2011.10.441
Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, Boemi M, Giugliano D (2008) Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 57:1349–1354. https://doi.org/10.2337/db08-0063
Esper RJ, Nordaby RA, Vilarino JO, Paragano A, Cacharron JL, Machado RA (2006) Endothelial dysfunction: a comprehensive appraisal. Cardiovasc Diabetol 5:4
Kalina U, Koyama N, Hosoda T, Nuernberger H, Sato K, Hoelzer D, Herweck F, Manigold T, Singer MV, Rossol S, Böcker U (2002) Enhanced production of IL-18 in butyrate-treated intestinal epithelium by stimulation of the proximal promoter region. Eur J Immunol 32:2635–2643
Vitali B, Ndagijimana M, Cruciani F, Carnevali P, Candela M, Guerzoni ME, Brigidi P (2010) Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiol 10:4. https://doi.org/10.1186/1471-2180-10-4
Wang Y, Xie J, Li Y, Dong S, Liu H, Chen J, Zhao S, Zhang Y, Zhang H (2016) Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure. Eur J Nutr 55:821–831. https://doi.org/10.1007/s00394-015-0904-3
Zhang LL, Gao CY, Fang CQ, Wang YJ, Gao D, Yao GE, Xiang J, Wang JZ, Li JC (2011) PPARgamma attenuates intimal hyperplasia by inhibiting TLR4-mediated inflammation in vascular smooth muscle cells. Cardiovasc Res 92:484–493. https://doi.org/10.1093/cvr/cvr238
Yao J, Pan D, Zhao Y, Zhao L, Sun J, Wang Y, You QD, Xi T, Guo QL, Lu N (2014) Wogonin prevents lipopolysaccharide-induced acute lung injury and inflammation in mice via peroxisome proliferator-activated receptor gamma-mediated attenuation of the nuclear factor-kappaB pathway. Immunology 143:241–257. https://doi.org/10.1111/imm.12305
Kinoshita A, Onoda H, Imai N, Nishino H, Tajiri H (2015) C-reactive protein as a prognostic marker in patients with hepatocellular carcinoma. Hepato-Gastroenterology 62:966–970
Hegazy SK, El-Bedewy MM (2010) Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis. World J Gastroenterol 16:4145–4151
Kleniewska P, Pawliczak R (2017) Influence of synbiotics on selected oxidative stress parameters. Oxidative Med Cell Longev 2017:9315375. https://doi.org/10.1155/2017/9315375
Badehnoosh B, Karamali M, Zarrati M, Jamilian M, Bahmani F, Tajabadi-Ebrahimi M, Jafari P, Rahmani E, Asemi Z (2017) The effects of probiotic supplementation on biomarkers of inflammation, oxidative stress and pregnancy outcomes in gestational diabetes. J Matern Fetal Neonatal Med:1–9. https://doi.org/10.1080/14767058.2017.1310193
Osman N, Adawi D, Molin G, Ahrne S, Berggren A, Jeppsson B (2006) Bifidobacterium infantis strains with and without a combination of oligofructose and inulin (OFI) attenuate inflammation in DSS-induced colitis in rats. BMC Gastroenterol 6:31
Ghoneim MA, Moselhy SS (2016) Antioxidant status and hormonal profile reflected by experimental feeding of probiotics. Toxicol Ind Health 32:741–750. https://doi.org/10.1177/0748233713506768
Nikniaz L, Mahdavi R, Ostadrahimi A, Hejazi MA, Vatankhah AM (2013) Effects of synbiotic supplementation on total antioxidant capacity of human breastmilk. Breastfeed Med 8:217–222. https://doi.org/10.1089/bfm.2012.0078
Jafarpour D, Shekarforoush SS, Ghaisari HR, Nazifi S, Sajedianfard J, Eskandari MH (2017) Protective effects of synbiotic diets of Bacillus coagulans, Lactobacillus plantarum and inulin against acute cadmium toxicity in rats. BMC Complement Altern Med 17:291. https://doi.org/10.1186/s12906-017-1803-3
Ebrahimi-Mameghani M, Sanaie S, Mahmoodpoor A, Hamishehkar H (2013) Effect of a probiotic preparation (VSL#3) in critically ill patients: a randomized, double-blind, placebo-controlled trial (Pilot Study). Pak J Med Sci 29:490–494
Lamprecht M, Bogner S, Schippinger G, Steinbauer K, Fankhauser F, Hallstroem S, Schuetz B, Greilberger JF (2012) Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J Int Soc Sports Nutr 9:45. https://doi.org/10.1186/1550-2783-9-45
Marjani A (2010) Lipid peroxidation alterations in type 2 diabetic patients. Pak J Biol Sci 13:723–730
Sadrzadeh-Yeganeh H, Elmadfa I, Djazayery A, Jalali M, Heshmat R, Chamary M (2010) The effects of probiotic and conventional yoghurt on lipid profile in women. Br J Nutr 103:1778–1783. https://doi.org/10.1017/S0007114509993801
Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M (2003) Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr 90:449–456
Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557
Gao D, Gao Z, Zhu G (2013) Antioxidant effects of Lactobacillus plantarum via activation of transcription factor Nrf2. Food Funct 4:982–989. https://doi.org/10.1039/c3fo30316k
Funding
The current study was funded by a grant from the Vice-Chancellor for Research, KUMS, and Iran.
Author information
Authors and Affiliations
Contributions
AF, FR, AS, MT-E, MS-E, and AK contributed in data collection and manuscript drafting. ZA assisted in conception, design, statistical analysis, and drafting of the manuscript. All authors confirmed the final version of the paper.
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
For Studies with Human Subjects
All procedures followed in the paper were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all patients for being included in the study.
Rights and permissions
About this article
Cite this article
Farrokhian, A., Raygan, F., Soltani, A. et al. The Effects of Synbiotic Supplementation on Carotid Intima-Media Thickness, Biomarkers of Inflammation, and Oxidative Stress in People with Overweight, Diabetes, and Coronary Heart Disease: a Randomized, Double-Blind, Placebo-Controlled Trial. Probiotics & Antimicro. Prot. 11, 133–142 (2019). https://doi.org/10.1007/s12602-017-9343-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12602-017-9343-1