[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Nanocomposites: a brief review

  • Original Paper
  • Published:
Health and Technology Aims and scope Submit manuscript

Abstract

Nanocomposite material consists out of several phases where at least one, two or three dimensions are in nanometer range. Taking material dimensions down to nanometer level creates phase interfaces which are very important for enhancement of materials properties. The ratio between surface area and volume of reinforced material used during nanocomposites preparation is directly involved in understanding of structure-property relationship. Nanocomposties offer opportunities on completely new scales for solving obstacles ranging from medical, pharmaceutical industry, food packaging, to electronics and energy industry. This paper presents main ideas behind nanocomposites and discusses matrix materials upon which nanocomposites can be divided in three classes; metal matrix, ceramic matrix and polymer matrix nanocomposites. The goal is to explain which raw material and technique is most suited for processing of a particular nanocomposites as well as application, advantages and drawbacks of nanocomposites. Nanotechnology is still in development and current limitations hinder global transition from macro-scale to nano-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kiesler E. Miniature device could unlock the promise of some kidney cancer drugs. Retrieved from https://www.mskcc.org/blog/miniature-device-could-unlock-promise-some-kidney-drugs. (2015).

  2. Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–70.

    Article  Google Scholar 

  3. Halloysite Nano Clay (Al2Si2O5(OH)42H2O+SiO2). Retrieved from http://www.reade.com/products/halloysite-nano-clay-al2si2o5-oh-42h2o-sio2. (2018).

  4. Schmidt D, Shah D, Giannelis EP. New advances in polymer/layered silicate nanocomposites. Curr Opin Solid State Mater Sci. 2002;6(3):205–12.

    Article  Google Scholar 

  5. Wang RM, Zheng SR, Zheng YP. Polymer matrix composites and technology. Woodhead Publishing Limited and Science Press Limited (2011).

  6. Lange FF. Effect of microstructure on strength of si3n4-sic composite system. 56(9):445–450. (1973).

  7. Becher PF. Microstructural design of toughened ceramics. J Am Ceram Soc. 1991;74(2):255–69.

    Article  Google Scholar 

  8. Harmer M, Chan HM, Miller GA. Unique opportunities for microstructural engineering with duplex and laminar ceramic composites. J Am Ceram Soc. 1992;75(2):1715–28.

    Article  Google Scholar 

  9. Fernando W, Satyanarayana KG. Functionalization of single layers and nanofibers: a new strategy to produce polymer nanaocomposites with optimized properties. 285(1):532–543. (2005).

  10. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. 2000;28(1–2):1–63.

    Article  Google Scholar 

  11. Theng BKG. The chemistry of clay-organic reactions. New York: Wiley; 1974.

    Google Scholar 

  12. Ogawa M, Kuroda K. Preparation of inorganic composites through intercalation of organo ammoniumions into layered silicates. Bull Chem Soc Jpn. 1997;70(11):2593–618.

    Article  Google Scholar 

  13. Noh MW, Lee DC. Synthesis and characterization of ps-clay nanocomposite by emulsion polymerization. Polym Bull. 1999;42(5):619–26.

    Article  Google Scholar 

  14. Yu Z, Pei Y, Lai S, Li S, Feng Y, Liu X. Single-source-precursor synthesis, microstructure and high temperature behavior of TiC-TiB2-SiC ceramic nanocomposites. Ceramics International. https://doi.org/10.1016/j.ceramint.2017.01.117. (2017).

  15. Long X, Shao C, Wang H, Wang J. Single-source-precursor synthesis of SiBNC-Zr ceramic nanocomposites fibers. Ceram Int. 2016;42(16):19206–11.

    Article  Google Scholar 

  16. Sun N, Jeurgensc LPH, Burghardb Z, Billb J. Ionic liquid assisted fabrication of high performance SWNTs reinforced ceramic matrix nano-composites. Ceram Int. 2017;43(2):2297–304.

    Article  Google Scholar 

  17. Ghasali E, Yazdani-rad R, Asadian K, Ebadzadeh T. Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods. J Alloys Compd. 2016. https://doi.org/10.1016/j.jallcom.2016.08.145.

  18. Yan X, Sahimi M, Tsotsis T. Fabrication of high-surface area nanoporous SiOC ceramics using pre-ceramic polymer precursors and a sacrificial template: Precursor effects Microporous and Mesoporous Materials. https://doi.org/10.1016/j.micromeso.2016.12.027. (2017).

  19. He J, Gao Y, Wang Y, Fang J, An L. Synthesis of ZrB2-SiC nanocomposite powder via polymeric precursor route. Ceram Int. 2016. https://doi.org/10.1016/j.ceramint.2016.10.073.

  20. Choia H, Yoonb SP, Hanb J, Kima J, Othmanc MR. Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods. J Alloys Compd. 2016. https://doi.org/10.1016/j.jallcom.2016.08.145.

  21. Brooke R, Fabretto M, Murphy P, Evans D, Cottis P, Talemi P. Recent advances in the synthesis of conducting polymers from the vapour phase. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2017.01.004. (2017).

  22. Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities materials research 12(1) 1–39. (2009).

  23. Yua Z, Lia S, Zhanga P, Fenga Y, Liua X. Polymer-derived mesoporous Ni/SiOC(H) ceramic nanocomposites for efficient removal of acid fuchsin. Ceram Int. 2016. https://doi.org/10.1016/j.ceramint.2016.12.104.

  24. Dezfuly RF, Yousefi R, Jamali-Sheini F. Photocurrent applications of Zn(1−x)CdxO/rGO nanocomposites. Ceram Int. 2016. https://doi.org/10.1016/j.ceramint.2016.01.150.

  25. Garmendia N, Olalde B, Obieta I. Biomedical applications of ceramic nanocomposites. Ceramic Nanocomposites, A volume in Woodhead Publishing Series in Composites Science and Engineering, 530–547. (2013).

  26. Gamal-Eldeena AM, Abdel-Hameedc SAM, El-Dalya SM, Abo-Zeida MAM, Swellamb MM. Cytotoxic effect of ferrimagnetic glass-ceramic nanocomposites on bone osteosarcoma cells. Biomed Pharmacother. 2017;88:689–97.

    Article  Google Scholar 

  27. Lee HS, Choi MY, Anandhan S, Baik DH, Seo SW. Microphase structure and physical properties of polyurethane/organoclay nanocomposites. ACS PMSE preprints. 2004;91:638.

    Google Scholar 

  28. Kobayashi T. Applied environmental materials science for sustainability. IgI Global (2016).

  29. Dermenci KB, Gencc B, Ebinb B, Olmez-Hanci T, Gürmen S. Photocatalytic studies of Ag/ZnO nanocomposite particles produced via ultrasonic spray pyrolysis method. J Alloys Compd. 2014;586:267–73.

    Article  Google Scholar 

  30. Kashinath L, Namratha K, Byrappa K. Sol-gel assisted hydrothermal synthesis and characterization of hybrid ZnS-RGO nanocomposite for efficient photodegradation of dyes. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2016.10.063. (2016).

  31. Ren Q, Su H, Zhang J, Ma W, Yao B, Liu L, et al. Rapid eutectic growth of Al2O3/Er3Al5O12 nanocomposite prepared by a new method: Melt falling-drop quenching. Scr Mater. 2016;125:39–43.

    Article  Google Scholar 

  32. Abdelhamid HN, Talib A, Wu HF. One pot synthesis of gold - carbon dots nanocomposite and its application for cytosensing of metals for cancer cells. Talanta. 2016. https://doi.org/10.1016/j.talanta.2016.11.030.

  33. Zare Y, Shabani I. Polymer/metal nanocomposites for biomedical applications. Mater Sci Eng. 2015. https://doi.org/10.1016/j.msec.2015.11.023.

  34. Królikowski W, Rosłaniec Z. Nanokompozyty polimerowe. Composites. Polish Ministry of Science. Wydawnictwo Politechniki Czestochwskie. 2004;4:3–16.

  35. Spasówka E, Rudnik E, Kijeński J. Biodegradowalne nanokompozytypolimerowe. Polimery. 2006;51:617–26.

    Article  Google Scholar 

  36. Ogasawara T, Ishida Y, Ishikawa T, Yokota R. Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Composites part A - Applied Science. 2004;35(1):67–74.

    Article  Google Scholar 

  37. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. 2000;28(1–2):1–63.

    Article  Google Scholar 

  38. Rehab A, Salahuddin N. Nanocomposite materials based on polyurethane intercalated into montmorillonite clay. Mater Sci Eng A. 2005;399:368–76.

    Article  Google Scholar 

  39. Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater. 2006;40(17):1511–75.

    Article  Google Scholar 

  40. Kornmann X, Linderberg H, Bergund LA. Synthesis of epoxy–clay nanocomposites: influence of the nature of the curing agent on structure. Polymer. 2001;42:4493–9.

    Article  Google Scholar 

  41. Anandhan S, Bandyopadhyay S. Polymer nanocomposites: from synthesis to applications. INTECH Open Access Publisher (2011).

  42. Haraguchi K. Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J. 2011;43:223–241.-287.

    Article  Google Scholar 

  43. Bai H, Ho W. New sulfonated polybenzimidazole (SPBI) copolymer-based protonexchange membranes for fuel cells. J Taiwan Inst Chem Eng. 2008;40:260–7.

    Article  Google Scholar 

  44. Smart SK, Cassady AI, Lu GQ, Martin DJ. The biocompatibility of carbon nanotubes. Carbon. 2006;44(6):1034–47.

    Article  Google Scholar 

  45. Nayaka SS, Pabi SK, Kimb DH, Murtyc BS. Microstructure-hardness relationship of Al–(L12)Al3Ti nanocomposites prepared by rapid solidification processing. Intermetallics. 2010;18:487–92.

    Article  Google Scholar 

  46. Fiorito S, Serafino A, Andreola F, Bernier P. Effects of fullerenes and singlewall carbon nanotubes on murine and human macrophages. Carbon. 2006;44(6):1100–5.

    Article  Google Scholar 

  47. Hurt RH, Monthioux M, Kane A. toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon. 2006;44(6):1028–33.

    Article  Google Scholar 

  48. Yao Y, Chen L. Processing of B4C Particulate-reinforced magnesium-matrix composites by metal-assisted melt infiltration technique. J Mater Sci Technol. 2014;30(7):661–5.

    Article  MathSciNet  Google Scholar 

  49. Wilson M, Kannangara K, Smith G, Simmons M, Raguse B. Nanotechnology: basic science and emerging technologies. Boca Raton: CRC press; 2002.

    Book  Google Scholar 

  50. Mackenzie JD, Chung YJ, Hu Y. J Non-Cryst Solids 147&148, 271. (1992).

  51. Mège-Revil A, Steyer P, Cardinal S, Thollet G, Esnouf C, Jacquot P, et al. Correlation between thermal fatigue and thermomechanical properties during the oxidation of multilayered TiSiN nanocomposite coatings synthesized by a hybrid physical/chemical vapour deposition process. Thin Solid Films. 2010;518:5932–7.

    Article  Google Scholar 

  52. Scarisoreanu M, Fleaca C, Morjan I, Niculescu AM, Luculescu C, Dutu E, et al. High photoactive TiO2/SnO2 nanocomposites prepared by laser pyrolysis. Appl Surf Sci. 2017. https://doi.org/10.1016/j.apsusc.2016.12.122.

  53. Dehgahi S, Amini R, Alizadeh M. Microstructure and corrosion resistance of Ni-Al2O3-SiC nanocomposite coatings produced by electrodeposition technique. J Alloys Compd. 2017. https://doi.org/10.1016/j.jallcom.2016.08.244.

  54. Dios M, Gonzalez Z, Gordoa E, Ferrari B. Semiconductor-metal core-shell nanostructures by colloidal heterocoagulation in aqueous medium. Mater Lett. 2016;180:327–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anera Kazlagić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omanović-Mikličanin, E., Badnjević, A., Kazlagić, A. et al. Nanocomposites: a brief review. Health Technol. 10, 51–59 (2020). https://doi.org/10.1007/s12553-019-00380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12553-019-00380-x

Keywords

Navigation