[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advertisement

Applying a Handwriting Measurement Model for Capturing Cognitive Load Implications Through Complex Figure Drawing

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The aim of the study was to examine the application of a computerized handwriting model for characterizing complex figure-drawing performance. We posit that spatial, temporal, and pressure measures that reflect figure-drawing behavior will differ significantly under two mental workload conditions, and that both drawing and handwriting process measures will predict the quality of what is drawn and/or written. Thirty participants copied the Rey–Osterrieth Complex Figure Test (ROCFT). They then reproduced it from memory and finally copied a paragraph on a digitizer that is part of the Computerized Penmanship Evaluation Tool (ComPET) system. Results indicated that certain computerized measures of the ROCFT copying significantly correlated with those of the paragraph-copying behavior (r = .38–.75). Significant differences were found between the spatial and temporal computerized measures of performance in the ROCFT copying and drawing-from-memory tasks. Stepwise regressions indicated that mean pressure predicted 12 % of the variance of the ROCFT and paragraph-copying quality scores and 6 % of the ROCFT drawing-from-memory score. Furthermore, 52 % of the variance of the ROCFT drawing-from-memory score was predicted by the mean velocity. The benefits and significance of obtaining computerized measures of the drawing process for better insight about human performance characteristics are discussed, and applications are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Squartini S, Hu S, Liu Q. Advances on brain inspired computing. Cogn Comput. 2013;5:161–3.

    Article  Google Scholar 

  2. Zhao Z, Chen Z, Chen Y, Wang S, Wang H. A class incremental extreme learning machine for activity recognition. Cogn Comput. 2014;6:423–31.

    Article  Google Scholar 

  3. Taylor JG. Cognitive computation. Cogn Comput. 2009;1:4–16.

    Article  Google Scholar 

  4. Cambria E, Hussain A. Sentic computing: techniques, tools, and applications. Springer briefs in cognitive computation. Dordrecht: Springer; 2012.

  5. Hussain A, Niazi M. Toward a formal, visual framework of emergent cognitive development of scholars. Cogn Comput. 2014;6:113–24.

    Article  Google Scholar 

  6. TraviesoCM, Alonso JB. Special issue on advanced cognitive systems based on nonlinear analysis. Cogn Comput. 2013;5:397–8.

  7. McClelland JL. Is a machine realization of truly human-like intelligence achievable? Cogn Comput. 2009;1:17–21.

    Article  Google Scholar 

  8. Stone JV. Learning perceptually salient visual parameters using spatiotemporal smoothness constraints. Neural Comput. 1996;8:1463–92.

    Article  CAS  PubMed  Google Scholar 

  9. Malik ZK, Hussain A, Wu J. Novel biologically inspired approaches to extracting online information from temporal data. Cogn Comput. 2014;6:595–607.

    Article  Google Scholar 

  10. Faundez-Zanuy M, Hussain A, Mekyska J, Sesa-Nogueras E, Monte-Moreno E, Esposito A. et al. Biometric applications related to human beings: there is life beyond security. Cogn Comput. 2013;5:136–51.

  11. Squartini S, Esposito A. CO-WORKER: toward real-time and context-aware systems for human collaborative knowledge building. Cogn Comput. 2012;4:157–71.

    Article  Google Scholar 

  12. Kandel S, Valdois S. Syllables as functional units in a copying task. Lang Cogn Proc. 2006;21:432–52.

  13. Longstaff MG, Heath RA. The influence of motor system degradation on the control of handwriting movements: a dynamical systems analysis. Hum Mov Sci. 2003;22:91–110.

  14. Poon KW, Li-Tsang CWP, Weiss TPL, Rosenblum S. The effect of a computerized visual perception and visual-motor integration training program on improving Chinese handwriting of children with handwriting difficulties. Res Dev Disabil. 2010;31:1552–60.

    Article  CAS  PubMed  Google Scholar 

  15. Werner P, Rosenblum S, Bar-On G, Heinik J, Korczyn A. Handwriting process variables discriminating mild Alzheimer’s disease and mild cognitive impairment. J Gerontol B Psychol Sci Soc Sci. 2006;61:228–36.

    Article  Google Scholar 

  16. Rosenblum S, Dekel T, Gurevitz I, Werner P, Heinik J. Handwriting process variables among elderly people with mild major depressive disorder: a preliminary study. Aging-Clin Exp Res. 2010;22:141–7.

    Article  PubMed  Google Scholar 

  17. Luria G, Rosenblum S. A computerised multidimensional measurement of mental workload via handwriting. Behav Res Meth. 2012;44:575–86.

    Article  Google Scholar 

  18. Luria G, Kahana A, Rosenblum S. Detection of deception via handwriting behaviors using a computerized tool: toward an evaluation of malingering. Cogn Comput. 2014;6(4):849–55.

  19. Sesa-Nogueras E, Faundez-Zanuy M, Mekyska J. An information analysis of in-air and on-surface trajectories in online handwriting. Cogn Comput. 2012;4:195–205.

  20. Rey A. L’examenpsychologiquedans les casd’encephalopathietraumatique. Arch Psychol. 1941;28:286–340.

    Google Scholar 

  21. Osterrieth P. The test of copying a complex figure: a contribution to the study of perception and memory. Arch Psychol. 1944;30:206–356.

    Google Scholar 

  22. Caffarra P, Vezzadini, Dieci F, Zonato F, Venneri A. Rey–Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci. 2002;22:443–7.

    Article  CAS  PubMed  Google Scholar 

  23. Baddeley AD, Hitch GJ. Working memory. In: Bower GH, editor, The psychology of learning and motivation. New York: Academic Press; 1974. pp. 47–89.

  24. Baddeley AD. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4:829–39.

    Article  CAS  PubMed  Google Scholar 

  25. Longstaff MG, Heath RA. A nonlinear analysis of the temporal characteristics of handwriting. Hum Mov Sci. 1999;18:485–524.

    Article  Google Scholar 

  26. Chartrel E, Vinter A. The impact of spatio-temporal constraints on cursive letter handwriting in children. Learn Instr. 2008;18(6):537–47.

    Article  Google Scholar 

  27. Cegarra J, Chevalier A. The use of Tholos software for combining measures of mental workload: Toward theoretical and methodological improvements. Behav Res Methods. 2008;40(4):988–1000.

  28. Wickens CD. Multiple resources and performance prediction. Theor Issues Ergon Sci. 2002;3(2):159–77.

    Article  Google Scholar 

  29. Luria G, Rosenblum S. Comparing the handwriting behaviors of true and false writing with computerized handwriting measures. Appl Cogn Psychol. 2010;24:1115–28.

    Article  Google Scholar 

  30. Bi S, Salvendy G. Analytical modeling and experimental study of human workload in scheduling of advanced manufacturing systems. Int J Hum Factor Man. 1994;4:205–34.

    Article  Google Scholar 

  31. Sheridan TB. Risk, human error, and system resilience: fundamental ideas. Hum Factors. 2008;50(3):418–26.

    Article  PubMed  Google Scholar 

  32. Cassenti DN, Kelley TD, Carlson RA. Modeling the workload-performance relationship. In: Proceedings of the human factors and ergonomics society annual meeting. Beverly Hills, CA: SAGE; 2010. Vol. 54, No. 19, pp. 1684–8.

  33. Reason J. How necessary steps in a task get omitted: revising old ideas to combat a persistent problem. Cogn Technol. 1998;3:24–32.

    Google Scholar 

  34. Cahill SM. Where does handwriting fit in? Strategies to support academic achievement. Interv Sch Clin. 2009;44(4):223–8.

    Article  Google Scholar 

  35. Chervinsky A, Mitrushina M, Satz P. Comparison of four methods of scoring the Rey–Osterrieth complex figure drawing test on four age groups of normal elderly. Brain Dysfunction. 1992;5(5–6):267–87.

    Google Scholar 

  36. Waber D, Holmes JM. Assessing children’s copy productions of the Rey–Osterrieth Complex Figure. J Clin Exp Neuropsychol. 1985;7:264–80.

    Article  CAS  PubMed  Google Scholar 

  37. Waber D, Holmes JM. Assessing children’s memory production of the Rey–Osterrieth Complex Figure. J Clin Exp Neuropsychol. 1986;8:563–80.

    Article  CAS  PubMed  Google Scholar 

  38. Guerin F, Ska B, Belleville S. Cognitive processing of drawing abilities. Brain Cogn. 1999;40:464–78.

    Article  CAS  PubMed  Google Scholar 

  39. Rosenblum S, Parush S, Weiss PL. Computerized temporal handwriting characteristics of proficient and poor hand writers. Am J Occup Ther. 2003;57(2):129–38.

    Article  PubMed  Google Scholar 

  40. Erez N, Parush S. The Hebrew handwriting evaluation. School of Occupational Therapy. Faculty of Medicine. Hebrew University of Jerusalem, Israel; 1999.

  41. Fastenau PS, Denburg NL, Hufford BJ. Adult norms for the Rey–Osterrieth complex figure test and for supplemental recognition and matching trials from the extended complex figure test. Clin Neuropsychol. 1999;13(1):30–47.

    Article  CAS  PubMed  Google Scholar 

  42. Repovs G, Baddeley A. The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience. 2006;139(1):5–21.

    Article  CAS  PubMed  Google Scholar 

  43. Kelley CM, McLaughlin AC. Individual differences in the benefits of feedback for learning. Hum Factors. 2012;54(1):26–35.

  44. Smits-Engelsman BCM, Van Galen GP. Dysgraphia in children: lasting psychomotor deficiency or transient developmental delay? J Exp Child Psychol. 1997;67:164–84.

    Article  CAS  PubMed  Google Scholar 

  45. McEvoy LK, Smith ME, Gevins A. Dynamic cortical networks of verbal and spatial working memory: effects of memory load and task practice. Cereb Cortex. 1998;8:563–74.

    Article  CAS  PubMed  Google Scholar 

  46. Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK. Models of visuospatial and verbal memory across the adult life span. Psychol Aging. 2002;17(2):299.

    Article  PubMed  Google Scholar 

  47. Froese T, Suzuki K, Ogai Y, Ikegami T. Using human–computer interfaces to investigate ‘mind-as-it-could-be’ from the first-person perspective. Cognit Comput. 2012;4:365–82.

    Article  Google Scholar 

  48. Rosenblum S, Livneh-Zirinsky M. Handwriting process and product characteristics of children diagnosed with developmental coordination disorder. Hum Mov Sci. 2008;27:200–14.

    Article  PubMed  Google Scholar 

  49. Sesa-Nogueras E, Faundez-Zanuy M, Mekyska J. An information analysis of in-air and on-surface trajectories in online handwriting. Cogn Comput. 2012;4:195–205.

  50. Lei H, Govindaraju V. A comparative study on the consistency of features in on-line signature verification. Pattern Recogn Lett. 2005;26:2483–89.

  51. Guest R. Age dependency in handwritten dynamic signature verification systems. Pattern Recogn Lett. 2006;27(10):1098–104.

    Article  Google Scholar 

  52. Mailah M, Lim BH. Biometric signature verification using pen position, time, velocity and pressure parameters. Jurnal Teknologi 2012;48(1):35–54.

  53. Perlovsky LI, Levine DS. The drive for creativity and the escape from creativity: neurocognitive mechanisms. Cogn Comput. 2012;4:292–305.

    Article  Google Scholar 

  54. Folstein MF, Folstein SE, McHugh PR. Mini mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.

    Article  CAS  PubMed  Google Scholar 

  55. Tucha O, Mecklinger L, Thome J, Reiter A, Alders GL, Sartor H, Naumann M, Lange KW. Kinematic analysis of dopaminergic effects on skilled handwriting movements in Parkinson’s disease. J Neural Transm. 2006;113:609–23.

    Article  CAS  PubMed  Google Scholar 

  56. Tucha O, Mecklinger L, Walitza S, Lange KW. The effect of caffeine on handwriting movements in skilled writers. Hum Mov Sci. 2006;25(4–5):523–35.

    Article  PubMed  Google Scholar 

  57. Heinik J, Werner P, Dekel T, Gurevitz I, Rosenblum S. Computerized kinematic analysis of the clock drawing task in elderly people with mild major depressive disorder: an exploratory study. Int Psychogeriatr. 2010;22:479–88.

  58. Mohan V, Morasso P, Sandini G, Kasderidis S. Inference through embodied simulation in cognitive robots. Cogn Comput. 2013;5:355–82.

    Article  Google Scholar 

  59. Zhang S, He B, Nian R, Wang J, Han B, Lendasse A, Yuan G. Fast image recognition based on independent component analysis and extreme learning machine. Cogn Comput. 2014;6:405–22.

    Article  Google Scholar 

  60. Zeuner KE, Peller M, Knutzen A, Holler I, Münchau A, Hallett M et al. How to assess motor impairment in writer’s cramp. Mov Disord. 2007;22(8):1102–9.

  61. Dreiseitl Stephan, Ohno-Machado Lucila. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002;35(5):352–9.

    Article  PubMed  Google Scholar 

  62. Subirats, José L., et al. Multiclass pattern recognition extension for the new C-Mantec constructive neural network algorithm. Cogn Comput. 2.4 (2010):285–290.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Rosenblum.

Additional information

Sara Rosenblum and Gil Luria have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenblum, S., Luria, G. Applying a Handwriting Measurement Model for Capturing Cognitive Load Implications Through Complex Figure Drawing. Cogn Comput 8, 69–77 (2016). https://doi.org/10.1007/s12559-015-9343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-015-9343-y

Keywords