Abstract
In this paper, the longitudinal-lateral attitude control and fault self-repairing of a small helicopter is investigated using fuzzy feedforward and quantum control techniques. The Lagrange-Euler equation is used to derive a mathematical model of the helicopter flight dynamics. To handle the complex faults of the helicopter flight system, a model reference-based self-repairing control law is proposed using quantum control techniques, which can improve the helicopter’s self-repairing and control precision. In addition, a fuzzy feedforward compensation controller is designed to improve the anti-disturbance performance. Finally, simulation results are given to illustrate the effectiveness of the developed intelligent self-repairing controller.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Dzul A, Lozano R, Castillo PI. Adaptive altitude control for a small helicopter in a vertical flying stand. In: Proceedings of the 42nd IEEE conference on decision and control maul. Hawaii, USA. 2003;12:2710–15.
Boris A, Fradkov LA, Dimitri P. Adaptive control experiments for LAAS “Helicopter” Benchmark. International conference on physics and control. St. Petersburg, Russian Federation: [s.n]; 2005. p. 760–5.
Galindo R, Lozano R. Control of under-actuated systems, application to a tandem fan in 3-dof platform. In: Proceeding of the IEEE international conference on control applications. Anchorage, Alaska, USA: IEEE. 2000. p. 25–7.
Jiang B, Chowdhury FN. Fault estimation and accommodation for linear MIMO discrete-time systems. IEEE Trans Control Syst Technol. 2005;13(3):493–9.
Elgersma M, Glavaski S. Reconfigurable control for active management of aircraft system failures. In: Proceedings of the American control conference, Arlington, VA, June 25–27, 2001.
Drozeski GR, Saha B, Vachtsevanos GJ. A fault detection and reconfigurable control architecture for unmanned aerial vehicles. IEEE aerospace conference, 2005. p. 2955–63.
Wang LX. Stable adaptive fuzzy control of nonlinear system. IEEE Trans Fuzzy Syst. 1993;1(2):146–55.
Cao SG, Rees NW, Feng G. Analysis and design for a class of complex control system-Part I: fuzzy modelling and identification. Automatica. 1997;33(6):1017–28.
Ervin JC, Alptekin SE. Fuzzy logic control of a model airplane. In: Proceedings of the IEEE international conference on systems, man and cybernetics. 1998. p. 2320–25.
Sun Q, Li RH. Design of adaptive fuzzy control systems with robust stability. Control Decis. 2000;15(6):641–4.
Andrievsky BR, Fradkov AL. Combined adaptive autopilot for an UAV flight control. In: Proceedings of the 2002 IEEE international conference on control applications, Glasgow, Scotland, UK. 2002. p. 290–1.
Kim SW, Kim ET. A new adaptive fuzzy controller using the parallel structure of fuzzy controller and its application. Fuzzy Sets Syst. 1996;81(3):205–26.
Chen FY, Jiang B, Zhang K. The integrated application on adaptive control of unmanned combat aerial vehicles. In: Proceedings of the 2nd international symposium on systems and control in aeronautics and astronautics, Shenzhen. 2008. p. 1311–15.
Liu XX, Zhang WG, Wu Y, et al. Direct adaptive control-based reconfiguration flight control system. Control Decis. 2007;22(4):440–4.
Gao H, Yang X, Shi P. Multi-objective robust H-infinity control of spacecraft Rendezvous. IEEE Trans Control Syst Technol. 2009;17(4):794–802.
Yang X, Gao H, Shi P. Robust orbital transfer for low earth orbit spacecraft with small-thrust. J Frankl Inst. 2010;347(10):1863–87.
Hu Q, Shi P, Gao H. Adaptive variable structure and commanding shaped vibration control of flexible spacecraft. AIAA J Guidance Control Dyn. 2007;30(3):804–15.
Wang HQ, Wang DB, Mian AA, Duan HB. Robust multimode control design for an unmanned helicopter with multiloop flight structure. Int J Innov Comput Inform Control. 2010;6(2):615–26.
Yamamoto Toru, Mori Shinnosuke, Sakaguchi Akihiro. Data-driven skill-based PID control of a pilot-scale helicopter model. Int J Innov Comput Inform Control. 2008;4(12):3349–58.
Lien S-F, Hsia K-H, Su J-P. Image-guided height estimation for unmanned helicopter landing. ICIC Express Lett. 2010;4(6B):2299–304.
Tandale MD, Valasek J. Fault-tolerant structured adaptive model inversion control. J Guidance Control Dyn. 2006;29(3):635–42.
Chen FY, Jiang B, Zhang K. Direct self-repair control and actuator failures re-present techniques for civil aviation aircraft. Int J Innov Comput Inform Control. 2009;5(2):503–10.
Chen ZH, Dong DY, Zhang CB. Quantum control theory. Hefei: University of Science and Technology of China Press; 2005.
Cong S. Quantum system control survey of progress in quantum control system. Chin J Quantum Electron. 2003;20(1):1–9.
Han KH, Kim JH. Genetic quantum algorithm and its application to combinational optimization problem. In: Proceedings of the international congress on evolutionary computation. IEEE Press; 2000. p. 1354–60.
Li SY, Li PC. Quantum computation and quantum optimization algorithms. Harbin: Harbin Institute of Technology Press; 2009.
Dong DY, Chen CL, et al. Incoherent control of quantum systems with wavefunction controllable subspaces via quantum reinforcement learning. IEEE Trans Syst Man Cybern. 2008;38(4):957–62.
Chen FY, Jiang B. Direct self-repairing control for a small helicopter via fuzzy adaptive technique. ICIC Express Lett. 2010;4(3A):641–6.
Acknowledgments
The project was supported by National Natural Science Foundation of China (61074080) and Innovation Foundation for Aeronautical Science and Technology (08C52001).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, F., Jiang, B. & Tao, G. Fault Self-repairing Flight Control of a Small Helicopter via Fuzzy Feedforward and Quantum Control Techniques. Cogn Comput 4, 543–548 (2012). https://doi.org/10.1007/s12559-012-9143-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12559-012-9143-6