[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A novel adaptive finite-time control method for a class of uncertain nonlinear systems

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents a novel adaptive finite-time control (AFTC) method for a class of uncertain nonlinear systems. First, a new nonsingular terminal sliding mode surface is proposed. Then an adaptive finite-time controller with proper adaptive laws is designed to guarantee the occurrence of the sliding motion in finite time without prior knowledge of the upper bounds of the uncertainties and external disturbances. The globally finite-time stability of the closed-loop system is analytically proven. The numerical simulation results are presented to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFTC:

Adaptive Finite-time Control

SMC:

Sliding Mode Control

TSM:

Terminal Sliding Mode

FTSM:

Fast Terminal Sliding Mode

NTSM:

Nonsingular Terminal Sliding Mode

References

  1. Lewis, F. L., Dawson, D. M., and Abdallah, C. T., “Robot Manipulator Control: Theory and Practice,” Marcel Dekker, New York, pp. 107–169, 2004.

    Google Scholar 

  2. Lin, F.-J., Teng, L.-T., and Shieh, P.-H., “Intelligent Sliding-Mode Control using RBFN for Magnetic Levitation System,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 3, pp. 1752–1762, 2007.

    Article  Google Scholar 

  3. Park, J.-W., Kim, C.-H., Park, D. Y., and Ahn, C., “Controller Design with High Fidelity Model for a Passive Maglev Tray System,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 8, pp. 1521–1528, 2014.

    Article  Google Scholar 

  4. Sato, K. and Hama, T., “High-Speed Positioning of Ultrahigh- Acceleration and High-Velocity Linear Synchronous Motor,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 8, pp. 1537–1544, 2014.

    Article  Google Scholar 

  5. Levant, A, and Alelishvili, L., “Integral High-Order Sliding Modes,” IEEE Transactions on Automatic Control, Vol. 52, No. 7, pp. 1278–1282, 2007.

    Article  MathSciNet  Google Scholar 

  6. Lee, J.-Y., Khan, A. M., Jang, H.-Y., Han, J.-S., and Han, C.-S., “Pattern Generation and Control of a Double Pendulum using a Nonlinear Oscillator,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 8, pp. 1675–1680, 2014.

    Article  Google Scholar 

  7. Ge, Z.-M., Yu, T.-C., and Chen, Y.-S., “Chaos Synchronization of a Horizontal Platform System,” Journal of Sound and Vibration, Vol. 268, No. 4, pp. 731–749, 2003.

    Article  Google Scholar 

  8. Zhankui, S. and Sun, K., “Nonlinear and Chaos Control of a Micro- Electro-Mechanical System by using Second-Order Fast Terminal Sliding Mode Control,” Communications in Nonlinear Science and Numerical Simulation, Vol. 18, No. 9, pp. 2540–2548, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, J., Li, S., and Yu, X., “Sliding-Mode Control for Systems with Mismatched Uncertainties via a Disturbance Observer,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, pp. 160–169, 2013.

    Article  Google Scholar 

  10. Back, J. and Shim, H., “An Inner-Loop Controller Guaranteeing Robust Transient Performance for Uncertain MIMO Nonlinear Systems,” IEEE Transactions on Automatic Control, Vol. 54, No. 7, pp. 1601–1607, 2009.

    Article  MathSciNet  Google Scholar 

  11. Yang, Z.-J., Tsubakihara, H., Kanae, S., Wada, K., and Su, C.-Y., “A Novel Robust Nonlinear Motion Controller with Disturbance Observer,” IEEE Transactions on Control Systems Technology, Vol. 16, No. 1, pp. 137–147, 2008.

    Article  Google Scholar 

  12. Hung, J. Y., Gao, W., and Hung, J. C., “Variable Structure Control: A Survey,” IEEE Transactions on Industrial Electronics, Vol. 40, No. 1, pp. 2–22, 1993.

    Article  Google Scholar 

  13. Sabanovic, A., “Variable Structure Systems with Sliding Modes in Motion Control-A Survey,” IEEE Transactions on Industrial Informatics, Vol. 2, No. 7, pp. 212–223, 2011.

    Article  Google Scholar 

  14. Plestan, F., Shtessel, Y., Bregeault, V., and Poznyak, A., “New Methodologies for Adaptive Sliding Mode Control,” International Journal of Control, Vol. 83, No. 9, pp. 1907–1919, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  15. Venkataraman, S. T. and Gulati, S., “Control of Nonlinear Systems using Terminal Sliding Modes,” Journal of Dynamic Systems, Measurement, and Control, Vol. 115, No. 3, pp. 554–560, 1993.

    Article  MATH  Google Scholar 

  16. Zhihong, M., Paplinski, A., and Wu, H., “A Robust Mimo Terminal Sliding Mode Control Scheme for Rigid Robotic Manipulators,” IEEE Transactions on Automatic Control, Vol. 39, No. 12, pp. 2464–2469, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu, X. and Zhihong, M., “Fast Terminal Sliding-Mode Control Design for Nonlinear Dynamical Systems,” IEEE Transaction on Circuits and Systems-I: Fundemental Theory and Applications, Vol. 49, No. 2, pp. 261–264, 2002.

    Article  MathSciNet  Google Scholar 

  18. Yu, S., Yu, X., Shirinzadeh, B., and Man, Z., “Continuous Finite- Time Control for Robotic Manipulators with Terminal Sliding Mode,” Automatica, Vol. 41, No. 11, pp. 1957–1964, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng, Y., Yu, X., and Man, Z., “Non-Singular Terminal Sliding Mode Control of Rigid Manipulators,” Automatica, Vol. 38, No. 12, pp. 2159–2167, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, H., Han, Z.-Z., Xie, Q.-Y., and Zhang, W., “Finite-Time Chaos Control via Nonsingular Terminal Sliding Mode Control,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 6, pp. 2728–2733, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, M., Wu, Q.-X., and Cui, R.-X., “Terminal Sliding Mode Tracking Control for a Class of SISO Uncertain Nonlinear Systems,” ISA Transactions, Vol. 52, No. 2, pp. 198–206, 2013.

    Article  Google Scholar 

  22. Zhihong, M., O'day, M., and Yu, X., “A Robust Adaptive Terminal Sliding Mode Control for Rigid Robotic Manipulators,” Journal of Intelligent and Robotic systems, Vol. 24, No. 1, pp. 23–41, 1999.

    Article  MATH  Google Scholar 

  23. Neila, M. B. R. and Tarak, D., “Adaptive Terminal Sliding Mode Control for Rigid Robotic Manipulators,” International Journal of Automation and Computing, Vol. 8, No. 2, pp. 215–220, 2011.

    Article  Google Scholar 

  24. Wang, L., Chai, T., and Zha, L., “Neural-Network-based Terminal Sliding-Mode Control of Robotic Manipulators Including Actuator Dynamics,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 9, pp. 3296–3304, 2009.

    Article  Google Scholar 

  25. Li, T.-H. S. and Huang, Y.-C., “Mimo Adaptive Fuzzy Terminal Sliding-Mode Controller for Robotic Manipulators,” Information Sciences, Vol. 180, No. 23, pp. 4641–4660, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, C.-C. and Ou, C.-J., “Adaptive Terminal Sliding Mode Control Subject to Input Nonlinearity for Synchronization of Chaotic Gyros,” Communications in Nonlinear Science and Numerical Simulation, Vol. 18, No. 3, pp. 682–691, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  27. Fang, L., Li, T., Li, Z., and Li, R., “Adaptive Terminal Sliding Mode Control for Anti-Synchronization of Uncertain Chaotic Systems,” Nonlinear Dynamics, Vol. 74, No. 4, pp. 991–1002, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, L. and Yang, J., “Robust Finite-Time Convergence of Chaotic Systems via Adaptive Terminal Sliding Mode Scheme,” Communications in Nonlinear Science and Numerical Simulation, Vol. 16, No. 6, pp. 2405–2413, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, C.-C., “Adaptive Nonsingular Terminal Sliding Mode Control for Synchronization of Identical F6 Oscillators,” Nonlinear Dynamics, Vol. 69, No. 1-2, pp. 21–33, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  30. Fei, J. and Yan, W., “Adaptive Control of Mems Gyroscope using Global Fast Terminal Sliding Mode Control and Fuzzy-Neural-Network,” Nonlinear Dynamics, Vol. 78, No. 1, pp. 103–116, 2014.

    Article  MathSciNet  Google Scholar 

  31. Aghababa, M. P. and Aghababa, H. P., “A General Nonlinear Adaptive Control Scheme for Finite-Time Synchronization of Chaotic Systems with Uncertain Parameters and Nonlinear Inputs,” Nonlinear Dynamics, Vol. 69, No. 4, pp. 1903–1914, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  32. Bhat, S. P. and Bernstein, D. S., “Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators,” IEEE Transactions on Automatic Control, Vol. 43, No. 5, pp. 678–682, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  33. Hong, Y., Huang, J., and Xu, Y., “On an Output Feedback Finite- Time Stabilization Problem,” IEEE Transactions on Automatic Control, Vol. 46, No. 2, pp. 305–309, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  34. Bhat, S. P. and Bernstein, D. S., “Geometric Homogeneity with Applications to Finite-Time Stability,” Mathematics of Control, Signals and Systems, Vol. 17, No. 2, pp. 101–127, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  35. Tang, Y., “Terminal Sliding Mode Control for Rigid Robots,” Automatica, Vol. 34, No. 1, pp. 51–56, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  36. Beckenbach, E. F. and Bellman, R., “Inequalities,” Springer-Verlag, Berlin, pp. 18–19, 1961.

    Book  Google Scholar 

  37. Utkin, V., “Sliding Modes in Control and Optimization,” Springer Verlag, Berlin, pp. 12–13, 1992.

    Book  MATH  Google Scholar 

  38. Slotine, J.-J. E. and Li, W., “Applied Nonlinear Control,” Prentice-Hall Englewood Cliffs, New Jersey, pp. 100–156, 1991

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, XT., Kang, HJ. A novel adaptive finite-time control method for a class of uncertain nonlinear systems. Int. J. Precis. Eng. Manuf. 16, 2647–2654 (2015). https://doi.org/10.1007/s12541-015-0339-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-015-0339-z

Keywords

Navigation