Abstract
We exactly solve the \({\mathcal {NP}}\)-hard combinatorial optimization problem of finding a minimum cardinality vertex separator with k (or arbitrarily many) capacitated shores in a hypergraph. We present an exponential size integer programming formulation which we solve by branch-and-price. The pricing problem, an interesting optimization problem on its own, has a decomposable structure that we exploit in preprocessing. We perform an extensive computational study, in particular on hypergraphs coming from the application of re-arranging a matrix into single-bordered block-diagonal form. Our experimental results show that our proposal complements the previous exact approaches in terms of applicability for larger k, and significantly outperforms them in the case \(k=\infty \).
Similar content being viewed by others
References
Aykanat, C., Pinar, A., Çatalyürek, Ü.V.: Permuting sparse rectangular matrices into block-diagonal form. SIAM J. Sci. Comput. 25(6), 1860–1879 (2004)
Bagnall, A., Rayward-Smith, V., Whittley, I.: The next release problem. Inf. Softw. Technol. 43(14), 883–890 (2001). https://doi.org/10.1016/S0950-5849(01)00194-X
Balas, E., de Souza, C.C.: The vertex separator problem: a polyhedral investigation. Math. Program. 103(3), 583–608 (2005). https://doi.org/10.1007/s10107-005-0574-7
Barahona, F., Jensen, D.: Plant location with minimum inventory. Math. Program. 83(1), 101–111 (1998). https://doi.org/10.1007/BF02680552
Baum, S., Trotter Jr., L.: Integer rounding for polymatroid and branching optimization problems. SIAM J Algebra Discrete Methods 2(4), 416–425 (1981)
Ben-Ameur, W., Mohamed-Sidi, M.A., Neto, J.: The \(k\)-separator problem: polyhedra, complexity and approximation results. J. Combinatorial Optim. 29, 1–32 (2015)
Ben Amor, H., Desrosiers, J., Valério de Carvalho, J.: Dual-optimal inequalities for stabilized column generation. Oper. Res. 54(3), 454–463 (2006). https://doi.org/10.1287/opre.1060.0278
Bergner, M., Caprara, A., Ceselli, A., Furini, F., Lübbecke, M., Malaguti, E., Traversi, E.: Automatic Dantzig-Wolfe reformulation of mixed integer programs. Math. Prog. 149(1–2), 391–424 (2015). https://doi.org/10.1007/s10107-014-0761-5
Borndörfer, R., Ferreira, C.E., Martin, A.: Decomposing matrices into blocks. SIAM J. Optim. 9(1), 236–269 (1998)
Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett. 42(3), 153–159 (1992)
Cornaz, D., Furini, F., Lacroix, M., Malaguti, E., Mahjoub, A.R., Martin, S.: Mathematical formulations for the balanced vertex \(k\)-separator problem. In: Control, Decision and Information Technologies (CoDIT), 2014 International Conference on, pp. 176–181. IEEE (2014)
Cornaz, D., Furini, F., Lacroix, M., Malaguti, E., Mahjoub, A.R., Martin, S.: The vertex \(k\)-cut problem. Tech. rep., Optimization Online (2017)
de Souza, C., Balas, E.: The vertex separator problem: algorithms and computations. Math. Program. 103(3), 609–631 (2005). https://doi.org/10.1007/s10107-005-0573-8
Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)
Evrendilek, C.: Vertex separators for partitioning a graph. Sensors 8(2), 635–657 (2008)
Ghoniem, A., Sherali, H.D.: Complementary column generation and bounding approaches for set partitioning formulations. Optim. Lett. 3(1), 123–136 (2009)
Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Oper. Res. 9(6), 849–859 (1961)
Kartak, V.M., Ripatti, A.V., Scheithauer, G., Kurz, S.: Minimal proper non-irup instances of the one-dimensional cutting stock problem. Discrete Appl. Math. 187, 120–129 (2015)
Kayaaslan, E., Pinar, A., Çatalyürek, Ümit, Aykanat, C.: Partitioning hypergraphs in scientific computing applications through vertex separators on graphs. SIAM J. Sci. Comput. 34(2), A970–A992 (2012). https://doi.org/10.1137/100810022
Kellerman, E.: Determination of keyword conflict. IBM Tech. Discl. Bull. 16(2), 544–546 (1973)
Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Program. Comput. 3(2), 103–163 (2011). https://doi.org/10.1007/s12532-011-0025-9
Kou, L.T., Stockmeyer, L.J., Wong, C.K.: Covering edges by cliques with regard to keyword conflicts and intersection graphs. Commun. ACM 21(2), 135–139 (1978). https://doi.org/10.1145/359340.359346
Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Oper. Res. 53(6), 1007–1023 (2005)
Marcotte, O.: An instance of the cutting stock problem for which the rounding property does not hold. Oper. Res. Lett. 4(5), 239–243 (1986)
Oosten, M., Rutten, J.H.G.C., Spieksma, F.C.R.: Disconnecting graphs by removing vertices: a polyhedral approach. Stat. Neerl. 61(1), 35–60 (2007). https://doi.org/10.1111/j.1467-9574.2007.00350.x
Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. Comput. Sched. Public Transp. Urban Passeng. Veh. Crew Sched. 269–280 (1981)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Bastubbe, M., Lübbecke, M.E. A branch-and-price algorithm for capacitated hypergraph vertex separation. Math. Prog. Comp. 12, 39–68 (2020). https://doi.org/10.1007/s12532-019-00171-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12532-019-00171-5