[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A branch-and-price algorithm for capacitated hypergraph vertex separation

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

We exactly solve the \({\mathcal {NP}}\)-hard combinatorial optimization problem of finding a minimum cardinality vertex separator with k (or arbitrarily many) capacitated shores in a hypergraph. We present an exponential size integer programming formulation which we solve by branch-and-price. The pricing problem, an interesting optimization problem on its own, has a decomposable structure that we exploit in preprocessing. We perform an extensive computational study, in particular on hypergraphs coming from the application of re-arranging a matrix into single-bordered block-diagonal form. Our experimental results show that our proposal complements the previous exact approaches in terms of applicability for larger k, and significantly outperforms them in the case \(k=\infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aykanat, C., Pinar, A., Çatalyürek, Ü.V.: Permuting sparse rectangular matrices into block-diagonal form. SIAM J. Sci. Comput. 25(6), 1860–1879 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bagnall, A., Rayward-Smith, V., Whittley, I.: The next release problem. Inf. Softw. Technol. 43(14), 883–890 (2001). https://doi.org/10.1016/S0950-5849(01)00194-X

    Article  Google Scholar 

  3. Balas, E., de Souza, C.C.: The vertex separator problem: a polyhedral investigation. Math. Program. 103(3), 583–608 (2005). https://doi.org/10.1007/s10107-005-0574-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Barahona, F., Jensen, D.: Plant location with minimum inventory. Math. Program. 83(1), 101–111 (1998). https://doi.org/10.1007/BF02680552

    Article  MathSciNet  MATH  Google Scholar 

  5. Baum, S., Trotter Jr., L.: Integer rounding for polymatroid and branching optimization problems. SIAM J Algebra Discrete Methods 2(4), 416–425 (1981)

    Article  MathSciNet  Google Scholar 

  6. Ben-Ameur, W., Mohamed-Sidi, M.A., Neto, J.: The \(k\)-separator problem: polyhedra, complexity and approximation results. J. Combinatorial Optim. 29, 1–32 (2015)

    Article  MathSciNet  Google Scholar 

  7. Ben Amor, H., Desrosiers, J., Valério de Carvalho, J.: Dual-optimal inequalities for stabilized column generation. Oper. Res. 54(3), 454–463 (2006). https://doi.org/10.1287/opre.1060.0278

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergner, M., Caprara, A., Ceselli, A., Furini, F., Lübbecke, M., Malaguti, E., Traversi, E.: Automatic Dantzig-Wolfe reformulation of mixed integer programs. Math. Prog. 149(1–2), 391–424 (2015). https://doi.org/10.1007/s10107-014-0761-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Borndörfer, R., Ferreira, C.E., Martin, A.: Decomposing matrices into blocks. SIAM J. Optim. 9(1), 236–269 (1998)

    Article  MathSciNet  Google Scholar 

  10. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett. 42(3), 153–159 (1992)

    Article  MathSciNet  Google Scholar 

  11. Cornaz, D., Furini, F., Lacroix, M., Malaguti, E., Mahjoub, A.R., Martin, S.: Mathematical formulations for the balanced vertex \(k\)-separator problem. In: Control, Decision and Information Technologies (CoDIT), 2014 International Conference on, pp. 176–181. IEEE (2014)

  12. Cornaz, D., Furini, F., Lacroix, M., Malaguti, E., Mahjoub, A.R., Martin, S.: The vertex \(k\)-cut problem. Tech. rep., Optimization Online (2017)

  13. de Souza, C., Balas, E.: The vertex separator problem: algorithms and computations. Math. Program. 103(3), 609–631 (2005). https://doi.org/10.1007/s10107-005-0573-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  15. Evrendilek, C.: Vertex separators for partitioning a graph. Sensors 8(2), 635–657 (2008)

    Article  Google Scholar 

  16. Ghoniem, A., Sherali, H.D.: Complementary column generation and bounding approaches for set partitioning formulations. Optim. Lett. 3(1), 123–136 (2009)

    Article  MathSciNet  Google Scholar 

  17. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Oper. Res. 9(6), 849–859 (1961)

    Article  MathSciNet  Google Scholar 

  18. Kartak, V.M., Ripatti, A.V., Scheithauer, G., Kurz, S.: Minimal proper non-irup instances of the one-dimensional cutting stock problem. Discrete Appl. Math. 187, 120–129 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kayaaslan, E., Pinar, A., Çatalyürek, Ümit, Aykanat, C.: Partitioning hypergraphs in scientific computing applications through vertex separators on graphs. SIAM J. Sci. Comput. 34(2), A970–A992 (2012). https://doi.org/10.1137/100810022

    Article  MathSciNet  MATH  Google Scholar 

  20. Kellerman, E.: Determination of keyword conflict. IBM Tech. Discl. Bull. 16(2), 544–546 (1973)

    Google Scholar 

  21. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Program. Comput. 3(2), 103–163 (2011). https://doi.org/10.1007/s12532-011-0025-9

    Article  MathSciNet  Google Scholar 

  22. Kou, L.T., Stockmeyer, L.J., Wong, C.K.: Covering edges by cliques with regard to keyword conflicts and intersection graphs. Commun. ACM 21(2), 135–139 (1978). https://doi.org/10.1145/359340.359346

    Article  MathSciNet  MATH  Google Scholar 

  23. Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Oper. Res. 53(6), 1007–1023 (2005)

    Article  MathSciNet  Google Scholar 

  24. Marcotte, O.: An instance of the cutting stock problem for which the rounding property does not hold. Oper. Res. Lett. 4(5), 239–243 (1986)

    Article  MathSciNet  Google Scholar 

  25. Oosten, M., Rutten, J.H.G.C., Spieksma, F.C.R.: Disconnecting graphs by removing vertices: a polyhedral approach. Stat. Neerl. 61(1), 35–60 (2007). https://doi.org/10.1111/j.1467-9574.2007.00350.x

    Article  MathSciNet  MATH  Google Scholar 

  26. Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. Comput. Sched. Public Transp. Urban Passeng. Veh. Crew Sched. 269–280 (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco E. Lübbecke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 485 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastubbe, M., Lübbecke, M.E. A branch-and-price algorithm for capacitated hypergraph vertex separation. Math. Prog. Comp. 12, 39–68 (2020). https://doi.org/10.1007/s12532-019-00171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-019-00171-5

Keywords

Mathematics Subject Classification

Navigation