[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A league-knock-out tournament quantum particle swarm optimization algorithm for nonlinear constrained optimization problems and applications

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

In solving optimization problem by metaheuristic algorithm, the main key for avoiding local optima is to enhance the exploration and exploitation phases. This is possible through several processes like enhancement of search agent, hybridization etc. The aim of the work is to introduce a novel hybrid algorithm considering the strategies of group league and knock-out system through advanced metaheuristic algorithm, viz. quantum particle swarm optimization (QPSO). In the tournament of well known games, like Football World Cup, Cricket World Cup, etc. the above average teams (according to their performance) are selected through group league phase in the first round. Then the best team is identified through knock-out phase in the next rounds. This concept is applied in the proposed work to develop a hybrid algorithm for solving non-convex constrained optimization problems using parameter free penalty function technique. In group league phase, five different strategies are considered in developing league-knock-out based hybrid algorithms. For testing the robustness as well as efficiencies of these algorithms, constrained benchmark problems are solved and the results are compared with the existing popular algorithms. The obtained results of different variants are compared statistically and graphically to pick up the best strategy based algorithm. To analyse the statistical significance of the results obtained by hybrid algorithms, three statistical tests (non-parametric) are performed. Finally, this best strategy based hybrid algorithm is applied fruitfully for solving several engineering design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

We do not used any data from other sources.

References

  • Abualigah L, Elaziz MA, Yousri D, et al (2022) Augmented arithmetic optimization algorithm using opposite-based learning and lévy flight distribution for global optimization and data clustering. J Intell Manuf 1–39

  • Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38:13170–13180

    Article  Google Scholar 

  • Amirjanov A (2006) The development of a changing range genetic algorithm. Comput Methods Appl Mech Eng 195:2495–2508

    Article  MathSciNet  MATH  Google Scholar 

  • Bedolla-Ibarra MG, Cabrera-Hernandez M del C, Aceves-Fernández MA, Tovar-Arriaga S (2022) Classification of attention levels using a Random Forest algorithm optimized with Particle Swarm Optimization. Evol Syst 13:687–702

  • Bellera CA, Julien M, Hanley JA (2010) Normal approximations to the distributions of the Wilcoxon statistics: accurate to what N? Graphical insights. J Stat Educ 18:

  • Bharati B (1994) Controlled random search optimization technique and their applications. PhD Thesis, Department of Mathematics, University of Roorkee, Roorkee, India

  • Bhunia AK, Kundu S, Sannigrahi T, Goyal SK (2009) An application of tournament genetic algorithm in a marketing oriented economic production lot-size model for deteriorating items. Int J Prod Econ 119:112–121

    Article  Google Scholar 

  • Cagnina LC, Esquivel SC, Coello CAC (2008) Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32:319-326

  • Chakraborty S, Saha AK, Chakraborty R et al (2022) HSWOA: an ensemble of hunger games search and whale optimization algorithm for global optimization. Int J Intell Syst 37:52–104

    Article  Google Scholar 

  • Chickermane H, Gea HC (1996) Structural optimization using a new local approximation method. Int J Numer Meth Eng 39:829–846

    Article  MathSciNet  MATH  Google Scholar 

  • Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406). IEEE, pp 1951–1957

  • Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6:58–73

    Article  Google Scholar 

  • Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41:113–127

    Article  Google Scholar 

  • Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287

    Article  MathSciNet  MATH  Google Scholar 

  • Coello Coello CA (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civ Eng Syst 17:319–346

    Article  Google Scholar 

  • Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16:193–203

    Article  Google Scholar 

  • Dananjayan S, Zhuang J, Tang Y, et al (2022) Wireless sensor deployment scheme for cost-effective smart farming using the ABC-TEEM algorithm. Evol Syst 1–13

  • Das S, Konar A, Chakraborty UK (2005) Improving particle swarm optimization with differentially perturbed velocity. In: Proceedings of the 7th annual conference on Genetic and evolutionary computation. pp 177–184

  • Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential evolution–an updated survey. Swarm Evol Comput 27:1–30

    Article  Google Scholar 

  • Deb K (1991) Optimal design of a welded beam via genetic algorithms. AIAA J 29:2013–2015

    Article  Google Scholar 

  • Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186:311–338

    Article  MATH  Google Scholar 

  • Deep K (2008) A self-organizing migrating genetic algorithm for constrained optimization. Appl Math Comput 198:237–250

    MathSciNet  MATH  Google Scholar 

  • Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

    Article  Google Scholar 

  • Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406). IEEE, pp 1470–1477

  • dos Santos CL (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst Appl 37:1676–1683

    Article  Google Scholar 

  • Duary A, Rahman MS, Shaikh AA et al (2020) A new hybrid algorithm to solve bound-constrained nonlinear optimization problems. Neural Comput Appl 32:12427–12452

    Article  Google Scholar 

  • Duary A, Kumar N, Akhtar M et al (2022) Real coded self-organising migrating genetic algorithm for nonlinear constrained optimisation problems. Int J Operat Res 45:29–67

    Article  MathSciNet  Google Scholar 

  • Eita MA, Fahmy MM (2014) Group counseling optimization. Appl Soft Comput 22:585–604

    Article  Google Scholar 

  • El-Abd M (2013) Testing a particle swarm optimization and artificial bee colony hybrid algorithm on the CEC13 benchmarks. In: 2013 IEEE Congress on Evolutionary Computation. IEEE, pp 2215–2220

  • El-Abd M (2017) Global-best brain storm optimization algorithm. Swarm Evol Comput 37:27–44

    Article  Google Scholar 

  • Elaziz MA, Abualigah L, Ewees AA, et al (2022) Triangular mutation-based manta-ray foraging optimization and orthogonal learning for global optimization and engineering problems. Appl Intell 1–30

  • Farmani R, Wright JA (2003) Self-adaptive fitness formulation for constrained optimization. IEEE Trans Evol Comput 7:445–455

    Article  Google Scholar 

  • Fuentes Cabrera JC, Coello Coello CA (2007) Handling constraints in particle swarm optimization using a small population size. In: Mexican International Conference on Artificial Intelligence. Springer, pp 41–51

  • Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89:2325–2336

    Article  Google Scholar 

  • Gandomi AH, Yang X-S, Alavi AH (2013a) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35

    Article  Google Scholar 

  • Gandomi AH, Yang X-S, Alavi AH, Talatahari S (2013b) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22:1239–1255

    Article  Google Scholar 

  • García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180:2044–2064

    Article  Google Scholar 

  • Garg H (2019) A hybrid GSA-GA algorithm for constrained optimization problems. Inf Sci 478:499–523

    Article  Google Scholar 

  • Ghasemi P, Goodarzian F, Abraham A (2022) A new humanitarian relief logistic network for multi-objective optimization under stochastic programming. Appl Intell 52:13729–13762

  • Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl Soft Comput 19:177–187

    Article  Google Scholar 

  • Goodarzian F, Navaei A, Ehsani B, et al (2022) Designing an integrated responsive-green-cold vaccine supply chain network using Internet-of-Things: artificial intelligence-based solutions. Annal Operat Res 1–45

  • Gupta RK, Bhunia AK, Roy D (2009) A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components. J Comput Appl Math 232:275–284

    Article  MathSciNet  MATH  Google Scholar 

  • Hashim FA, Houssein EH, Mabrouk MS et al (2019) Henry gas solubility optimization: a novel physics-based algorithm. Futur Gener Comput Syst 101:646–667

    Article  Google Scholar 

  • Hashim FA, Hussain K, Houssein EH et al (2021) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51:1531–1551

    Article  Google Scholar 

  • Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  • He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20:89–99

    Article  Google Scholar 

  • Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  • Hesse R (1973) A heuristic search procedure for estimating a global solution of nonconvex programming problems. Oper Res 21:1267–1280

    Article  MATH  Google Scholar 

  • Himmelblau DM (2018) Applied nonlinear programming. McGraw-Hill

    MATH  Google Scholar 

  • Holland JH (1975) An efficient genetic algorithm for the traveling salesman problem. Eur J Oper Res 145:606–617

    MathSciNet  Google Scholar 

  • Houssein EH, Saad MR, Hashim FA et al (2020) Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 94:103731

    Article  Google Scholar 

  • Hsu Y-L, Liu T-C (2007) Developing a fuzzy proportional–derivative controller optimization engine for engineering design optimization problems. Eng Optim 39:679–700

    Article  MathSciNet  Google Scholar 

  • Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify Harris Hawks optimizer for numerical and engineering optimization problems. Appl Soft Comput 89:106018

    Article  Google Scholar 

  • Karaboga D, Basturk B (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE swarm intelligence symposium. IEEE Press Indiana

  • Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks. IEEE, pp 1942–1948

  • Ku KJ, Rao SS, Chen L (1998) Taguchi-aided search method for design optimization of engineering systems. Eng Optim 30:1–23

    Article  Google Scholar 

  • Kumar A, Das S, Mallipeddi R (2020a) A reference vector-based simplified covariance matrix adaptation evolution strategy for constrained global optimization. IEEE Transact Cybern 52:3696-3709

  • Kumar N, Mahato SK, Bhunia AK (2020b) A new QPSO based hybrid algorithm for constrained optimization problems via tournamenting process. Soft Comput 24:11365–11379

    Article  MATH  Google Scholar 

  • Levy AV, Montalvo A (1985) The tunneling algorithm for the global minimization of functions. SIAM J Sci Stat Comput 6:15–29

    Article  MathSciNet  MATH  Google Scholar 

  • Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10:281–295

    Article  Google Scholar 

  • Mezura-Montes E, Coello CAC (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9:1–17

    Article  MATH  Google Scholar 

  • Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4:1–32

    Article  Google Scholar 

  • Mirjalili S (2015a) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  • Mirjalili S (2015b) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  • Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput 9:1–14

    Article  Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513

    Article  Google Scholar 

  • Nasir M, Das S, Maity D et al (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf Sci 209:16–36

    Article  MathSciNet  Google Scholar 

  • Ong P, Ho CS, Chin DDVS (2020) An improved cuckoo search algorithm for design optimization of structural engineering problems. Commun Comput Appl Math 2:

  • Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8

  • Qin AK, Huang VL, Suganthan PN (2008) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13:398–417

    Article  Google Scholar 

  • Rakhshani H, Rahati A (2017) Intelligent multiple search strategy cuckoo algorithm for numerical and engineering optimization problems. Arab J Sci Eng 42:567–593

    Article  MATH  Google Scholar 

  • Ramezani F, Lotfi S (2013) Social-based algorithm (SBA). Appl Soft Comput 13:2837–2856

    Article  Google Scholar 

  • Rao RV (2016) Teaching-learning-based optimization algorithm. In: Teaching learning based optimization algorithm. Springer, pp 9–39

  • Rao RV, Pawar RB (2020) Self-adaptive multi-population Rao algorithms for engineering design optimization. Appl Artif Intell 34:187–250

    Article  Google Scholar 

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  • Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13:2592–2612

    Article  Google Scholar 

  • Salkin HM (1975) Integer programming. Edison Wesley Publishing Com, Amsterdam

    MATH  Google Scholar 

  • Schittkowski K (1987) More examples for mathematical programming codes. Lecture notes in economics and mathematical systems 282:

  • Schoenauer M, Xanthakis S (1993) Constrained GA optimization. In: Proc. 5th International Conference on Genetic Algorithms. Morgan Kaufmann, pp 573–580

  • Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753). pp 325–331 Vol.1

  • Suveren M, Akay R, Yildirim MY, Kanaan M (2022) Application of hybrid metaheuristic with Levenberg-Marquardt algorithm for 6-dimensional magnetic localization. Evol Syst 13:849-867

  • Tessema B, Yen GG (2006) A self adaptive penalty function based algorithm for constrained optimization. In: 2006 IEEE international conference on evolutionary computation. IEEE, pp 246–253

  • Wolpert DH, Macready WG (1995) No free lunch theorems for search. Technical Report SFI-TR-95–02–010, Santa Fe Institute

  • Xi M, Sun J, Xu W (2008) An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl Math Comput 205:751–759

    MATH  Google Scholar 

  • Xu W, Sun J (2005) Adaptive parameter selection of quantum-behaved particle swarm optimization on global level. In: International conference on intelligent computing. Springer, pp 420–428

  • Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. arXiv preprint arXiv:10031409

  • Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC). Ieee, pp 210–214

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102

    Article  Google Scholar 

  • Yılmaz S, Küçüksille EU (2015) A new modification approach on bat algorithm for solving optimization problems. Appl Soft Comput 28:259–275

    Article  Google Scholar 

  • Yousri D, AbdelAty AM, Al-qaness MA et al (2022) Discrete fractional-order Caputo method to overcome trapping in local optima: Manta Ray Foraging Optimizer as a case study. Expert Syst Appl 192:116355

    Article  Google Scholar 

  • Zahara E, Kao Y-T (2009) Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst Appl 36:3880–3886

    Article  Google Scholar 

  • Zaiontz C (2020) Real Statistics Using Excel. www.real-statistics.com. Accessed Aug

  • Zbigniew M (1996) Genetic algorithms+ data structures= evolution programs. In: Computational Statistics. Springer-Verlag, pp 372–373

  • Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178:3043–3074

    Article  Google Scholar 

  • Zhao W, Wang L, Zhang Z (2019) A novel atom search optimization for dispersion coefficient estimation in groundwater. Futur Gener Comput Syst 91:601–610

    Article  Google Scholar 

Download references

Acknowledgements

The first author wishes to express his heartfelt gratitude to the University Grants Commission, New Delhi, India, for financial help provided under award No. F. 82-1/2018. (SA-III). Additionally, the fifth author wishes to recognise the financial assistance granted for this study by WBDST&BT, West Bengal, India (Memo No: 429 (Sanc.)/ST/P/S&T/16G-23/2018 dated 12/03/2019). This work is partially supported by the financial assistance of Department of Science and Technology under FIST programme (SR/FST/MSII/2017/10(c) dated 23.10.2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Shaikh.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

P-1: (Levy & Montalvo problem) (Levy and Montalvo 1985).

Minimize \(f(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = - v_{1} - v_{2}\).

subject to:

$$\begin{aligned}g_{1} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} )& = [(v_{1} - 1)^{2} + (v_{2} - 1)][1/2\alpha^{2} - 1/2\beta^{2} ]\\&\quad + (v_{1} - 1) + (v_{2} - 1)][1/\alpha^{2} - 1/\beta^{2} ] - 1 \ge 0; \end{aligned}$$

where \(0 \le v_{1} ,v_{2} \le 1\) and \(\alpha = 2\), \(\beta = 0.25.\)

The global minimum of this problem is given by \(f_{\min } = - 1.8729\) with \(v_{1} = 1,v_{2} = 0.8729.\)


P-2: (Himmelblau problem) (Himmelblau 2018).

Minimize \(f(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 4.3v_{1} + 31.8v_{2} + 63.3v_{3} + 15.8v_{4} + 68.3v_{5} + 4.7v_{6}\).

subject to

$$\begin{gathered} g_{1} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 17.1v_{1} + 38.2v_{2} + 204.2v_{3} + 212.3v_{4} + 623.4v_{5} + 1495.5v_{6} - 169v_{1} v_{3} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 3580v_{3} v_{5} - 3810v_{4} v_{5} - 18500v_{4} v_{6} - 24300v_{5} v_{6} - 4.97 \ge 0; \hfill \\ \end{gathered}$$
$$\begin{gathered} g_{2} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 1.88 + 17.9v_{1} + 36.8v_{2} + 133.9v_{3} + 169.7v_{4} + 337.8v_{5} + 1385.2v_{6} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 139v_{1} v_{3} - 2450v_{4} v_{5} - 600v_{4} v_{6} - 17200v_{5} v_{6} \ge 0; \hfill \\ \end{gathered}$$
$$g_{3} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 429.08 - 273v_{2} - 70v_{4} - 819v_{5} + 26000v_{4} v_{5} \ge 0;$$
$$g_{4} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 159.9v_{1} - 311v_{2} + 587v_{4} + 391v_{5} + 2198v_{6} - 14000v_{1} v_{6} + 78.02 \ge 0;$$

where \(0 \le v_{1} \le 0.31,\)\(0 \le v_{2} \le 0.046,\)\(0 \le v_{3} \le 0.068,\)\(0 \le v_{4} \le 0.042,\)\(0 \le v_{5} \le 0.028,\)\(0 \le v_{6} \le 0.0134.\)

The global minimum of this problem occurs at (0, 0, 0, 0, 0, 0.00333) with \(f_{\min } = 0.0156\).


P-3: (Hess problem) (Hesse 1973).

Maximize \(f(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 25(v_{1} - 2)^{2} + (v_{2} - 2)^{2} + (v_{3} - 1)^{2} + (v_{4} - 4)^{2} + (v_{5} - 1)^{2} + (v_{6} - 4)^{2}\).


subject to

\(g_{1} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = v_{1} + v_{2} - 2.0 \ge 0\);

$$g_{2} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = - v_{1} + v_{2} + 6.0 \ge 0;$$

\(g_{3} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = v_{1} - v_{2} + 2.0 \ge 0\);

\(g_{4} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = - v_{1} + 3v_{2} + 2.0 \ge 0\);

\(g_{5} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = (v_{3} - 3)^{2} + v_{4} - 4 \ge 0\);

$$g_{6} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = (v_{5} - 3)^{2} + v_{6} - 4 \ge 0;$$

The ranges of the variables are \(0 \le v_{1} \le 5,\)\(0 \le v_{2} \le 1,\)\(0 \le v_{3} \le 5,\)\(0 \le v_{4} \le 6,\)\(0 \le v_{5} \le 5,\)\(0 \le v_{6} \le 10\). The function attains minimum value at (5, 1, 5, 0, 5, 10) with minimum value 310.


P-4: (Schittkowski problem) (Schittkowski 1987).

Minimize \(f(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = (v_{1}^{2} + v_{2} - 11)^{2} + (v_{1} + v_{2}^{2} - 7)^{2}\).

Subject to

$$\begin{gathered} g_{1} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 4.84 - (v_{1} - 0.05)^{2} - (v_{2} - 2.5)^{2} \ge 0; \hfill \\ g_{2} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = v_{1}^{2} + (v_{2} - 2.5)^{2} - 4.84 \ge 0; \hfill \\ \end{gathered}$$

with \(0 \le v_{j} \le 6,\)\(j = 1,2\)

Here \(f_{\min }\) = 13.59085 at \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v}^{*} = (2.246826,2.381865)\).


P-5: (Schoenauer & Xanthakis problem) (Schoenauer and Xanthakis 1993).

Maximize \(f(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = \frac{{\sin^{3} (2\pi v_{1} )\sin (2\pi v_{2} )}}{{v_{1}^{3} (v_{1} + v_{2} )}}\).

subject to

$$\begin{gathered} g_{1} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = - v_{1}^{2} + v_{2} - 1 \ge 0 \hfill \\ g_{2} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = - 1 + v_{1} - (v_{2} - 4)^{2} \ge 0 \hfill \\ \end{gathered}$$

where \(0 \le v_{j} \le 10,\)\(j = 1,2\).

The global maximum of this function is at (1.2279713, 4.2453733) with \(f_{\max } = 0.095\).


P-6: (Salkin problem) (Salkin 1975).

Maximize \(f(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 3v_{1} + v_{2} + 2v_{3} + v_{4} - v_{5}\).

subject to

\(g_{1} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 25v_{1} - 40v_{2} + 16v_{3} + 21v_{4} + v_{5} \le 300\);

\(g_{2} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = v_{1} + 20v_{2} - 50v_{3} + v_{4} - v_{5} \le 200\);

\(g_{3} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 60v_{1} + v_{2} - v_{3} + 2v_{4} + v_{5} \le 600\);

$$g_{4} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = - 7v_{1} + 4v_{2} + 15v_{3} - v_{4} + 65v_{5} \le 700;$$

with \(1 \le v_{1} \le 4,\)\(80 \le v_{2} \le 88,\)\(30 \le v_{3} \le 35,\)\(145 \le v_{4} \le 150,\)\(0 \le v_{5} \le 2\).

Here \(f_{\max }\) = 320 at \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v}^* = (4,88,35,150,0)\).


P-7: (Michalewicz problem) (Zbigniew 1996).

Minimize \(f(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 6.5 v_{1} - 0.5v_{1}^{2} - v_{2} - 2v_{3} - 3v_{4} - 2v_{5} - v_{6}\).

subject to

$$\begin{gathered} g_{1} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = v_{1} + 2v_{2} + 8v_{3} + v_{4} + 3v_{5} + 5v_{6} \le 16; \hfill \\ g_{2} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = - 8v_{1} - 4v_{2} - 2v_{3} + 2v_{4} + 4v_{5} - v_{6} \le - 1; \hfill \\ g_{3} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 2v_{1} + 0.5v_{2} + 0.2v_{3} - 3v_{4} - v_{5} - 4v_{6} \le 24; \hfill \\ g_{4} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 0.2v_{1} + 2v_{2} + 0.1v_{3} - 4v_{4} + 2v_{5} + 2v_{6} \le 12; \hfill \\ g_{5} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = - 0.1v_{1} - 0.5v_{2} + 2v_{3} + 5v_{4} - 5v_{5} + 3v_{6} \le 3; \hfill \\ \end{gathered}$$

where \(0 \le v_{j} \le 2,\)\(j = 1,3,6\),\(0 \le v_{2} \le 10,\)\(0 \le v_{k} \le 1,\)\(k = 4,5\)

Here \(f_{\min }\)\(= - 11\) at \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v}^* = (0,6,0,1,1,0)\).


P-8: (Michaelwicz & Schoenauer problem) (Michalewicz and Schoenauer 1996).

Minimize \(f(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 5\sum\limits_{i = 1}^{4} {v_{i} - } 5\sum\limits_{i = 1}^{4} {v_{{_{i} }}^{2} - } \sum\limits_{i = 5}^{13} {v_{i} }\).

subject to

$$\begin{gathered} g_{1} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 10 - (2v_{1} + 2v_{2} + v_{10} + v_{11} ) \ge 0; \hfill \\ g_{2} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 10 - (2v_{1} + 2v_{3} + v_{10} + v_{12} ) \ge 0; \hfill \\ g_{3} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 10 - (2v_{2} + 2v_{3} + v_{11} + v_{12} ) \ge 0; \hfill \\ g_{4} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 8v_{1} - v_{10} \ge 0; \hfill \\ g_{5} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 8v_{2} - v_{11} \ge 0; \hfill \\ \end{gathered}$$
$$\begin{gathered} g_{6} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 8v_{3} - v_{12} \ge 0; \hfill \\ g_{7} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 2v_{4} + v_{5} - v_{10} \ge 0; \hfill \\ g_{8} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 2v_{6} + v_{7} - v_{11} \ge 0; \hfill \\ g_{9} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v} ) = 2v_{8} + v_{9} - v_{12} \ge 0; \hfill \\ \end{gathered}$$

where \(0 \le v_{j} \le 1,\)\(j = 1,2,3,4,5,6,7,8,9,13\), \(0 \le v_{k} \le 100\), \(k = 10,11,12\).

Here \(f_{\min }\)\(= - 15\) at \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v}^* = (1,1,1,1,1,1,1,1,1,3,3,3,1)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, G., Kumar, N., Duary, A. et al. A league-knock-out tournament quantum particle swarm optimization algorithm for nonlinear constrained optimization problems and applications. Evolving Systems 14, 1117–1143 (2023). https://doi.org/10.1007/s12530-023-09485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-023-09485-1

Keywords

Navigation