[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Design optimization of the complementary voltage controlled oscillator using a multi-objective gravitational search algorithm

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

Past decade has witnessed the progress of cross-coupled LC voltage controlled oscillator (VCO) in both academic and industrial communities. In this work, a new multi-objective optimization methodology is proposed to introduce an optimal design of a complementary cross-coupled LC-VCO. The design objective is to minimize the phase noise and power consumption of the oscillator at the oscillation frequency of 2.5 GHz and 1.5 V supply voltage. The important characteristics of the complementary LC-VCO which is one of the more popular cross-coupled configurations are described in sufficient details. In addition, the confirmation theorems of the proposed method are proven to show that the new version of Multi-Objective Gravitational Search Algorithm (MOGSA) can control the exploitation and exploration abilities of the algorithm. Hence the improved version of MOGSA has better performance against other popular multi-objective methods. The simulation results obtained from the circuit optimization are summarized to confirm the robustness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The Matlab code is available on: https://drive.google.com/file/d/1nVnAXohPuVyrTAD09cqXVuERtvBNzRwF/view?usp=sharing.

References

  • Angelov P (1994) A generalized approach to fuzzy optimization. Int J Intell Syst 9(3):261–268

    Article  MATH  Google Scholar 

  • Angelov PP, Filev DP (2004) Flexible models with evolving structure. Int J Intell Syst 19(4):327–340

    Article  MATH  Google Scholar 

  • Angelov P, Gu X, Kangin D (2017) Empirical data analytics. Int J Intell Syst 32(12):1261–1284

    Article  Google Scholar 

  • Asadi H, Lim CP, Mohammadi A, Mohamed S, Nahavandi S, Shanmugam L (2018) A genetic algorithm–based nonlinear scaling method for optimal motion cueing algorithm in driving simulator. Proc Inst Mech Eng Part i: J Syst Control Eng 232(8):1025–1038

    Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Dehbashian M, Zahiri SH (2011) A novel optimization tool for automated design of integrated circuits based on MOSGA. Comput Intell Electr Eng 2(3):17–34

    Google Scholar 

  • Doraghinejad M, Nezamabadi-Pour H (2014) Black hole: a new operator for gravitational search algorithm. Int J Comput Intell Syst 7(5):809–826

    Article  Google Scholar 

  • Ghai D, Mohanty SP, Thakral G (2013) Fast optimization of nano-CMOS voltage-controlled oscillator using polynomial regression and genetic algorithm. Microelectron J 44(8):631–641

    Article  Google Scholar 

  • Gu X, Angelov P, Rong H-J (2019) Local optimality of self-organising neuro-fuzzy inference systems. Inf Sci 503:351–380

    Article  Google Scholar 

  • Hajimiri A, Lee TH (1999) Design issues in CMOS differential LC oscillators. IEEE J Solid-State Circuits 34(5):717–724

    Article  Google Scholar 

  • Halim AH, Ismail I, Das S (2021) Performance assessment of the metaheuristic optimization algorithms: an exhaustive review. Artif Intell Rev 54(3):2323–2409

    Article  Google Scholar 

  • Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W (2022) Honey badger algorithm: new metaheuristic algorithm for solving optimization problems. Math Comput Simul 192:84–110

    Article  MATH  Google Scholar 

  • Hemmati MJ, Dehghani R (2021) Analysis and review of main characteristics of Colpitts oscillators. Int J Circuit Theory Appl 49(5):1285–1306

    Article  Google Scholar 

  • Hodges J, Lehmann EL (2012) Rank methods for combination of independent experiments in analysis of variance. In: Selected works of EL Lehmann. Springer, pp 403–418

  • Kazemzadeh-Parsi M (2014) A modified firefly algorithm for engineering design optimization problems. Iran J Sci Technol. Trans Mech Eng 38(M2):403

    Google Scholar 

  • Kherabadi HA, Mood SE, Javidi MM (2017) Mutation: a new operator in gravitational search algorithm using fuzzy controller. Cybern Inf Technol 17(1):72–86

    Google Scholar 

  • Lesson D (1966) A simple model of feedback oscillator noise spectrum. Proc IEEE 54(2):329–330

    Article  Google Scholar 

  • Li M, Yang S, Liu X, Wang K (2013) IPESA-II: improved Pareto envelope-based selection algorithm II. International conference on evolutionary multi-criterion optimization. Springer, pp 143–155

    Chapter  Google Scholar 

  • Meng C, Basunia A, Peters B, Gholami AM, Kuster B, Culhane AC (2019) MOGSA: integrative single sample gene-set analysis of multiple omics data. Mol Cell Proteomics 18(8):S153–S168

    Article  Google Scholar 

  • Mirhosseini M, Barani F, Nezamabadi-pour H (2017) QQIGSA: A quadrivalent quantum-inspired GSA and its application in optimal adaptive design of wireless sensor networks. J Netw Comput Appl 78:231–241

    Article  Google Scholar 

  • Mittal H, Tripathi A, Pandey AC, Pal R (2021) Gravitational search algorithm: a comprehensive analysis of recent variants. Multimed Tools Appl 80(5):7581–7608

    Article  Google Scholar 

  • Moattari M, Moradi MH (2020) Conflict monitoring optimization heuristic inspired by brain fear and conflict systems. Int J Artif Intell 18(1):45–62

    Google Scholar 

  • Mood SE, Javidi MM (2019) Energy-efficient clustering method for wireless sensor networks using modified gravitational search algorithm. Evol Syst 11:575–587

    Article  Google Scholar 

  • Mood SE, Ding M, Lin Z, Javidi MM (2021) Performance optimization of UAV-based IoT communications using a novel constrained gravitational search algorithm. Neural Comput Appl 33:15557–15568

    Article  Google Scholar 

  • Nezamabadi-Pour H, Barani F (2016) Gravitational search algorithm: concepts, variants, and operators. In: Handbook of research on modern optimization algorithms and applications in engineering and economics. IGI Global, pp 700–750

  • Nobahari H, Nikusokhan M, Siarry P (2011) Non-dominated sorting gravitational search algorithm. In: Proc. of the 2011 international conference on swarm intelligence, ICSI, pp 1–10

  • Panda M, Patnaik SK, Mal AK (2018) Performance enhancement of a VCO using symbolic modelling and optimisation. IET Circuits Devices Syst 12(2):196–202

    Article  Google Scholar 

  • Precup R-E, David R-C, Petriu EM, Preitl S, Paul AS (2011) Gravitational search algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity. In: Soft computing in industrial applications. Springer, pp 141–150

  • Precup R-E, David R-C, Roman R-C, Szedlak-Stinean A-I, Petriu EM (2021) Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using Slime Mould Algorithm. Int J Syst Sci. https://doi.org/10.1080/00207721.2021.1927236

    Article  Google Scholar 

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) BGSA: binary gravitational search algorithm. Nat Comput 9(3):727–745

    Article  MATH  Google Scholar 

  • Rashedi E, Rashedi E, Nezamabadi-pour H (2018) A comprehensive survey on gravitational search algorithm. Swarm Evol Comput 41:141–158

    Article  MATH  Google Scholar 

  • Rodríguez-Fdez I, Canosa A, Mucientes M, Bugarín A (2015) STAC: a web platform for the comparison of algorithms using statistical tests. In: 2015 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp 1–8

  • Rout PK, Acharya DP, Nanda U (2018) Advances in analog integrated circuit optimization: a survey. In: Handbook of research on applied optimization methodologies in manufacturing systems. IGI Global, pp 309–333

  • Tanabe R, Ishibuchi H (2018) An analysis of control parameters of MOEA/D under two different optimization scenarios. Appl Soft Comput 70:22–40

    Article  Google Scholar 

  • Tlelo-Cuautle E, Valencia-Ponce MA, de la Fraga LG (2020) Sizing CMOS amplifiers by PSO and MOL to improve DC operating point conditions. Electronics 9(6):1027

    Article  Google Scholar 

  • Xu J, Zhang J (2014) Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis. In: Proceedings of the 33rd Chinese control conference, IEEE, pp 8633–8638

  • Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  • Zhang LF, Zhou CX, He R, Xu Y, Yan ML (2015) A novel fitness allocation algorithm for maintaining a constant selective pressure during GA procedure. Neurocomputing 148:3–16

    Article  Google Scholar 

  • Zhang K, Chen M, Xu X, Yen GG (2021) Multi-objective evolution strategy for multimodal multi-objective optimization. Appl Soft Comput 101:107004

    Article  Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. TIK-Report 103

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SEM and MJH. The first draft of the manuscript was written by SEM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sepehr Mood Ebrahimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S.M., Hemmati, M.J. Design optimization of the complementary voltage controlled oscillator using a multi-objective gravitational search algorithm. Evolving Systems 14, 59–67 (2023). https://doi.org/10.1007/s12530-022-09433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-022-09433-5

Keywords

Navigation