[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Social network security using genetic algorithm

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

This paper introduces a proposed method for hidden community detection using genetic algorithm to consider network immunization against malware propagation. A dynamic spreading model is proposed, namely the susceptible–infected–recovered–susceptible with vaccination and quarantine states (SIRS-QV) to control the speed of malware propagation in communities. The vital nodes in communities are vaccinated to improve immunization of social networks. Moreover, the genetic algorithm is used to discover hidden network communities based on modularity criteria to measure the strength of a set of communities that partition the network. The hiddenness value is calculated to select a community with a higher hiddenness value and vaccinate the nodes in these communities to reduce the rapid spread of malware and after a short time halt the malware in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Heterogeneous Mobile Wireless Sensor Networks (HMWSNs).

  2. Internet of Things (IoTs).

  3. Girvan–Newman.

References

  • Ahmadi and Widodo (2020) Local stability of Malware propagation model on network computer with two time delay. In: AIP Conference Proceedings, 2020, vol. 2296, no. 1: AIP Publishing LLC, p 020087

  • Batista FK, Martin del Rey A, Queiruga-Dios A (2020) A new individual-based model to simulate malware propagation in wireless sensor networks. Mathematics 8(3):410

    Article  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308

    Article  MathSciNet  MATH  Google Scholar 

  • Cazabet R, Rossetti G (2019) Challenges in community discovery on temporal networks. In: Temporal network theory. Part of the computational social sciences book series (CSS). Springer, pp 181–197

  • del Rey AM, Hernández G, Tabernero AB, Dios AQ (2021) Advanced malware propagation on random complex networks. Neurocomputing 423:689–696

    Article  Google Scholar 

  • Drakopoulos G, Giotopoulos K, Giannoukou I, Sioutas S (2020) Unsupervised discovery of semantically aware communities with tensor Kruskal decomposition: a case study In Twitter. In: 15th international workshop on semantic and social media adaptation and personalization, pp 1–8

  • Erdős P, Rényi A (1961) On the strength of connectedness of a random graph. Acta Mathematica Hungarica 12(1):261–267

    MathSciNet  MATH  Google Scholar 

  • Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(1):17–60

    MathSciNet  MATH  Google Scholar 

  • Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  • Goh K-I, Oh E, Jeong H, Kahng B, Kim D (2002) Classification of scale-free networks. Proc Natl Acad Sci 99(20):12583–12588

    Article  MathSciNet  MATH  Google Scholar 

  • Gui Q, Deng R, Xue P, Cheng X (2018) A community discovery algorithm based on boundary nodes and label propagation. Pattern Recogn Lett 109:103–109

    Article  Google Scholar 

  • He K, Li Y, Soundarajan S, Hopcroft JE (2018) Hidden community detection in social networks. Inf Sci 425:92–106

    Article  MathSciNet  Google Scholar 

  • He D, Song Y, Jin D, Feng Z, Zhang B, Yu Z, Zhang W (2021) Community-centric graph convolutional network for unsupervised community detection. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on artificial intelligence, 2021, pp 3515–3521

  • Hosseini S, Azgomi MA (2016) A model for malware propagation in scale-free networks based on rumor spreading process. Comput Netw 108:97–107

    Article  Google Scholar 

  • Hosseini S, Azgomi MA (2018) The dynamics of an SEIRS-QV malware propagation model in heterogeneous networks. Physica A 512:803–817

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang L, Shi L, Liu L, Yao J, Yuan B, Zheng Y (2019) An efficient evolutionary user interest community discovery model in dynamic social networks for internet of people. IEEE Internet Things J 6(6):9226–9236

    Article  Google Scholar 

  • Kleinberg J, Lawrence S (2001) The structure of the Web. Science 294(5548):1849–1850

    Article  Google Scholar 

  • Li J, Li X, Gao Y, Yuan J, Fang B (2018) Dynamic trustworthiness overlapping community discovery in mobile internet of things. IEEE Access 6:74579–74597

    Article  Google Scholar 

  • Li L, Cui J, Zhang R, Xia H, Cheng X (2020) Dynamics of complex networks: malware propagation modeling and analysis in industrial Internet of Things. IEEE Access 8:64184–64192

    Article  Google Scholar 

  • Mitchell M (1996) Chapter 3: genetic algorithms in scientific models. In: An introduction to genetic algorithms. The MIT Press, Cambridge, pp 85–108

  • Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Article  MathSciNet  MATH  Google Scholar 

  • Newman ME (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133

    Article  Google Scholar 

  • Newman ME (2011) The structure of scientific collaboration networks. Proc Natl Acad Sci 98(2):404–409

    Article  MathSciNet  MATH  Google Scholar 

  • Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):1–16

    Article  Google Scholar 

  • Qiao S, Han N, Gao Y, Li R-H, Huang J, Guo J, Gutierrez LA, Wu X (2018) A fast parallel community discovery model on complex networks through approximate optimization. IEEE Trans Knowl Data Eng 30(9):1638–1651

    Article  Google Scholar 

  • Shen S, Zhou H, Feng S, Liu J, Zhang H, Cao Q (2020) An epidemiology-based model for disclosing dynamics of malware propagation in heterogeneous and mobile WSNs. IEEE Access 8:43876–43887

    Article  Google Scholar 

  • Souravlas S, Sifaleras A, Tsintogianni M, Katsavounis S (2021) A classification of community detection methods in social networks: a survey. Int J Gen Syst 50(1):63–91

    Article  MathSciNet  Google Scholar 

  • Van den Driessche P (2017) Reproduction numbers of infectious disease models. Infect Dis Model 2(3):288–303

    Google Scholar 

  • Van Steen M (2010) Graph theory and complex networks. An introduction, vol 144, pp 1–287

  • Waltman L, Van Eck NJ (2013) A smart local moving algorithm for large-scale modularity-based community detection. Eur Phys J B 86(11):1–14

    Article  Google Scholar 

  • Wang J, Zhao L, Huang R (2014) 2SI2R rumor spreading model in homogeneous networks. Phys A 413:153–161

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao X, Liang J, Wang J (2021) A community detection algorithm based on graph compression for large-scale social networks. Inf Sci 551:358–372

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou X, Wu B, Jin Q (2017) Analysis of user network and correlation for community discovery based on topic-aware similarity and behavioral influence. IEEE Trans Human-Mach Syst 48(6):559–571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soodeh Hosseini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MazhariSefat, B., Hosseini, S. Social network security using genetic algorithm. Evolving Systems 14, 175–190 (2023). https://doi.org/10.1007/s12530-022-09442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-022-09442-4

Keywords

Navigation