[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

The Use of Electric Fields for Edible Coatings and Films Development and Production: A Review

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Edible films and coatings can provide additional protection for food, while being a fully biodegradable, environmentally friendly packaging system. A diversity of raw materials used to produce edible coatings and films are extracted from marine and agricultural sources, including animals and plants. Electric fields processing holds advantage in producing safe, wholesome and nutritious food. Recently, the presence of a moderate electric field during the preparation of edible coatings and films was shown to influence their main properties, demonstrating its usefulness to tailor edible films and coatings for specific applications. This manuscript reviews the main aspects of the use of electric fields in the production of edible films and coatings, including the effect in their transport and mechanical properties, solubility and microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bourtomm T (2008) Edible films and coatings: characteristics and properties. Int Food Res J 15(3):1–12

    Google Scholar 

  2. Krochta JM (2002) Proteins as raw materials for films and coatings: definitions, current status, and opportunities. In: Gennadios A (ed) Protein-based films and coatings. CRC Press LLC, Florida

    Google Scholar 

  3. Bravin B, Peressini D, Sensidoni A (2006) Development and application of polysaccharide–lipid edible coating to extend shelf-life of dry bakery products. J Food Eng 76:280–290

    Article  CAS  Google Scholar 

  4. Rooney ML (2005) Introduction to active food packaging technologies. In: Han JH (ed) Innovations in food packaging, vol 5. Elsevier Science & Technology Books, Amsterdam, pp 63–77

    Chapter  Google Scholar 

  5. Lin D, Zhao Y (2007) Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr Rev Food Sci Food Saf 6(3):60–75

    Article  CAS  Google Scholar 

  6. Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430

    Article  CAS  Google Scholar 

  7. Guilbert S (1986) Technology and application of edible protective films. In: Mathlouthi M (ed) Food packaging and preservation-theory and practice. Elsevier Applied Science Publishers Co, London

    Google Scholar 

  8. Park HJ, Bunn JM, Weller PJ, Vergano PJ, Testin RF (1994) Water vapor permeability and mechanical properties of grain protein-based films as affected by mixtures of polyethylene glycol and glycerin plasticizers. Trans ASAE 37:1281–1285

    CAS  Google Scholar 

  9. Nieto MB (2009) Structure and function of polysaccharide gum-based edible films and coatings. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications, vol 3. Springer, Berlin, pp 57–112

    Chapter  Google Scholar 

  10. Dangaran K, Tomasula PM, Qi P (2009) Structure and function of protein-based edible films and coatings. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications, vol 2. Springer, Berlin, pp 24–56

    Google Scholar 

  11. Krochta JM (1997) Edible protein films and coating. In: Damadaram S, Paraf A (eds) Food proteins, their applications. Marcel Dekker, Inc, New York, pp 529–549

    Google Scholar 

  12. McHugh TH, Krochta JM (1994) Permeability properties of edible films. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (eds) Edible coatings and films to improve food quality. Technomic Publishing Company, Inc, Lancaster, pp 139–187

    Google Scholar 

  13. Bourtoom T (2008) Edible films and coatings: characteristics and properties. Int Food Res J 15(3):237–248

    Google Scholar 

  14. Guilbert S, Biquet B (1996) Edible films and coatings. In: Bureau G, Multon JL (eds) Food packaging technology. VCH Publishers, New York

    Google Scholar 

  15. Guilbert S, Cuq B, Gontard N (1997) Recent innovations in edible and/or biodegradable packaging materials. Food Addit Contam 14(6):741–751

    CAS  Google Scholar 

  16. Han JH, Gennadios A (2005) Edible films and coatings: a review. In: Han JH (ed) Innovations in food packaging, vol 15. Elsevier Science & Technology Books, Amsterdam, pp 239–259

    Chapter  Google Scholar 

  17. Yildirim M, Hettiarachchy NS (1997) Biopolymers produced by cross-linking soybean 11s globulin with whey proteins using transglutaminase. J Food Sci 62(2):270–275

    Article  CAS  Google Scholar 

  18. Rhim JM (1998) Modification of soy protein film by formaldehyde. Korean J Food Sci Technol 30(2):372–378

    Google Scholar 

  19. Were L, Hettiarachchy NS, Coleman M (1999) Properties of cysteine-added soy protein-wheat gluten films. J Food Sci 64:514–518

    Article  CAS  Google Scholar 

  20. Lacroix M, Ouattara B (2000) Combined industrial processes with irradiation to assure innocuity and preservation of food products—a review. Food Res Int 33(2):719–724

    Article  CAS  Google Scholar 

  21. Gennadios A, Weller MA, Hanna MA, Fronnig GW (1996) Mechanical and barrier properties of egg albumen film. J Food Sci 61(3):585–589

    Article  CAS  Google Scholar 

  22. Miller K, Krochta J (1997) Oxygen and aroma barrier properties of edible films: a review. Trends Food Sci Technol 8(7):228–237

    Article  CAS  Google Scholar 

  23. Micard X, Belamri R, Morel MH, Guilbert S (2000) Properties of chemically and physically treated wheat gluten films. J Agric Food Chem 48:2948–2953

    Article  CAS  Google Scholar 

  24. Casariego A, Souza BWS, Cerqueira MA, Teixeira JA, Cruz L, Díaz R, Vicente AA (2009) Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids 23(7):1895–1902

    Article  CAS  Google Scholar 

  25. Gennadios A, Rhim JW, Handa A, Weller CL, Hanna MA (1998) Ultraviolet radiation affects physical and molecular properties of soy protein films. J Food Sci 63(2):225–228

    Article  CAS  Google Scholar 

  26. Banejee R, Chen H, Wu J (1996) Milk protein-based edible film mechanical strength changes due to ultrasound process. J Food Sci 61(4):824–828

    Article  Google Scholar 

  27. Souza BWS, Cerqueira MA, Casariego A, Lima AMP, Teixeira JA, Vicente AA (2009) Effect of moderate electric fields in the permeation properties of chitosan coatings. Food Hydrocolloids 23:2110–2115

    Article  CAS  Google Scholar 

  28. Lei L, Zhi H, Zhang Xiujin Z, Takasuke I, Zaigui L (2007) Effects of different heating methods on the production of protein-lipid film. J Food Eng 82:292–297

    Article  Google Scholar 

  29. Souza BWS, Cerqueira MA, Martins JT, Casariego A, Teixeira JA, Vicente AA (2010) Influence of electric fields on the structure of chitosan edible coatings. Food Hydrocolloids 24:330–335

    Article  CAS  Google Scholar 

  30. García MA, Pinotti A, Martino M, Zaritzky N (2009) Electrically treated composite films based on chitosan and methylcellulose blends. Food Hydrocolloids 23:722–728

    Article  Google Scholar 

  31. Park HJ (1999) Development of advanced edible coatings for fruits. Trends Food Sci Technol 10:254–260

    Article  CAS  Google Scholar 

  32. Hershko V, Klein E, Nussinovitch A (1996) Relationship between edible coatings and garlic skin. J Food Sci 61(4):769–777

    Article  CAS  Google Scholar 

  33. Karbowiak T, Debeaufort F, Voilley A (2006) Importance of surface tension characterization for food pharmaceutical and packaging products: a review. Crit Rev Food Sci Nutr 46:391–407

    Article  Google Scholar 

  34. Zisman WA (1964) Contact angle, wettability and adhesion. In: Fowkes FM (ed) Advances in chemistry, vol 43. ACS, Washington, DC, pp 1–51

    Google Scholar 

  35. Rulon J, Robet H (1993) Wetting of low-energy surface. In: John B (ed) Wettability. Marcel Dekker, Inc, New York, pp 4–77

    Google Scholar 

  36. Choi WY, Park HJ, Ahn DJ, Lee J, Lee CY (2002) Wettability of Chitosan coating solution on ‘Fuji’ apple skin. J Food Sci 67:2668–2672

    Article  CAS  Google Scholar 

  37. Ribeiro C, Vicente AA, Teixeira JA, Miranda C (2007) Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biol Technol 44:63–70

    Article  CAS  Google Scholar 

  38. Casariego A, Souza BWS, Vicente AA, Teixeira JA, Cruz L, Díaz R (2008) Chitosan coating surface properties as affected by plasticizer, surfactant and polymer concentrations in relation to the surface properties of tomato and carrot. Food Hydrocolloids 22:1452–1459

    Article  CAS  Google Scholar 

  39. Sastry SK, Barach JT (2000) Ohmic and inductive heating. J Food Sci 65(4):42–46

    Google Scholar 

  40. Manvell C (1997) Minimal processing of food. Food Sci Technol Today 11(2):107–111

    Google Scholar 

  41. Zareifard MR, Ramaswamy HS, Trigui M, Marcotte M (2003) Ohmic heating behaviour and electrical conductivity of two-phase food. Innov Food Sci Emerg Technol 4:45–55

    Article  Google Scholar 

  42. Ruan R, Ye X, Chen PL, Doona C, Yang T (2004) Developments in ohmic heating. In: Richardson P (ed) Improving the thermal processing of foods. Woodhead Publishing Ltd, Cambridge, pp 224–252

  43. Castro I, Teixeira JA, Vicente AA (2003) The influence of field strength, sugar and solid content on electrical conductivity of strawberry products. J Food Process Eng 26:17–29

    Article  Google Scholar 

  44. Kim HJ, Choi YM, Yang TCS, Taub IA, Tempest P, Skudder P, Tucker G, Parrott DL (1996) Validation of OH for quality enhancement of food products. Food Technol 50:253–261

    Google Scholar 

  45. Parrott DL (1992) Use of OH for aseptic processing of food particulates. Food Technol 45:68–72

    Google Scholar 

  46. Skuder PJ (1989) Ohmic heating in food processing. Asian Food J 4:10–11

    Google Scholar 

  47. Pereira RN, Souza BWS, Cerqueira MA, Teixeira JA, Vicente AA (2010) Effect of electric fields on protein unfolding and aggregation: influence on edible films formation. Biomacromolecules. doi:10.102/bm100681a

  48. Sébastien F, Stéphane G, Copinet A, Coma V (2006) Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains. Carbohyd Polym 65:185–193

    Article  Google Scholar 

  49. Guilbert S, Biquet B (1989) Les films et enrobage comestibles. In: L’emballage des denrées alimentaires de grande consommation. Technique et Documentation, Lavoisier April, p 320

  50. Lima M, Heskitt BF, Sastry SK (1999) Diffusion of beet dye during electrical and conventional heating at steady-state temperature. J Food Process Eng 24(5):331–340

    Article  Google Scholar 

  51. Le Tien C, Millette M, Mateescu MA, Lacroix M (2004) Modified alginate and chitosan for lactic acid bacteria immobilization. Biotechnol Appl Biochem 39:347–354

    Article  CAS  Google Scholar 

  52. García MA, Pinotti A, Martino MN, Zaritzky NE (2009) Characterization of starch and composite edible films and coatings. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, Berlin, pp 169–209

    Chapter  Google Scholar 

  53. Wan Y, Wu H, Yu A, Wen D (2006) Biodegradable polylactide/chitosan blend membranes. Biomacromolecules 7:1362–1372

    Article  CAS  Google Scholar 

  54. Ogawa K, Yui T, Miya M (1992) Dependence on the preparation procedure of the polymorphism and crystallinity of chitosan membranes. Biosci Biotechnol Biochem 56:858–862

    Article  CAS  Google Scholar 

  55. Yamamoto A, Kawada J, Yui T, Ogawa K (1997) Conformational behavior of chitosan in the acetate salt: an X-ray study. Biosci Biotechnol Biochem 61:1230–1232

    Article  CAS  Google Scholar 

  56. Balau L, Lisa G, Popa MI, Tura V, Melnig V (2004) Physico-chemical properties of chitosan films. Cent Eur J Chem 2(4):638–647

    Article  CAS  Google Scholar 

  57. Sothornvit R, Pitak N (2007) Oxygen permeability and mechanical properties of banana films. Food Res Int 40:365–370

    Article  CAS  Google Scholar 

  58. Vermeiren L, Heirlings L, Devlieghere F, Debevere J (2003) Oxygen, ethylene and other scavengers. In: Ahvenainen R (ed) Novel food packaging techniques. Woodhead Publishing Limited and CRC Press LLC, Cambridge

    Google Scholar 

  59. Nivedita S, Sangaj NS, Malshe VC (2004) Permeability of polymers in protective organic coatings. Prog Org Coat 50:28–39

    Article  Google Scholar 

  60. Paramawati R, Yoshino T, Isobe S (2003) Effect of degradable plasticizer on tensile and barrier properties of single plasticized-zein film (Pengaruh degradable plasticizer tunggal terhadap karakteristik film dari zein). J Eng Pertanian 1(1):49–57

    Google Scholar 

  61. Gontard N, Duchez C, Cuq JL, Guilbert S (1994) Edible composite films of wheat gluten and lipids: water vapor permeability and other physical properties. Int J Food Sci Technol 2:39–50

    Google Scholar 

  62. Gontard N, Guilbert S, Cuq JL (1992) Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. J Food Sci 57(1):190–199

    Article  CAS  Google Scholar 

  63. Gilbert SG, Pegaz D (1969) Finding a new way to measure gas permeability. Package Eng 14:66–69

    CAS  Google Scholar 

  64. Krokida MK, Marinos-Kouris D (2003) Rehydration kinetics of dehydrated products. J Food Eng 57:1–7

    Article  Google Scholar 

  65. Letendre M, D’Aprano G, Delmas-Patterson G, Lacroix M (2002) Isothermal calorimetry study of calcium caseinate and whey protein isolate edible films cross-linked by heating and γ-irradiation. J Agric Food Chem 50:6053–6057

    Article  CAS  Google Scholar 

  66. Gennadios A, Park HJ, Weller CL (1993) Relative humidity and temperature effects on tensile strength of edible protein and cellulose ether films. Trans ASAE 36:1867–1872

    CAS  Google Scholar 

  67. Park SY, Marsh KS, Rhim JW (2002) Characteristics of chitosan films as affected by the type of solvent acid. J Food Sci 67:194–197

    Article  CAS  Google Scholar 

  68. Chen RH, Lin JH, Yang MH (1994) Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted films. Carbohyd Polym 24:41–46

    Article  CAS  Google Scholar 

  69. Ziani K, Oses J, Coma V, Maté JI (2008) Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation LWT. Food Sci Technol 41:2159–2165

    CAS  Google Scholar 

  70. Cervera MF, Heinämäki J, Krogars K, Jörgensen AC, Karjalainen M, Colarte AI, Yliruusi J (2004) Solid-state and mechanical properties of aqueous chitosan-amylose starch films plasticized with polyols. Pharm Sci Technol 5(1): article 15

    Google Scholar 

  71. Kirkwan M, Strawbridge J (2003) Plastic in food packaging. In: Coles R, McDowell D, Kirkwan M (eds) Food packaging technology. Blakwell Publishing, CRC-Press, Boca Raton, pp 174–240

    Google Scholar 

Download references

Acknowledgments

Author B.W.S. Souza is the recipient of a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), author M.A. Cerqueira is recipient of a fellowship from the Fundação para a Ciência e a Tecnologia (FCT, Portugal) (SFRH/BD/23897/2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António A. Vicente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, B.W.S., Cerqueira, M.A., Teixeira, J.A. et al. The Use of Electric Fields for Edible Coatings and Films Development and Production: A Review. Food Eng. Rev. 2, 244–255 (2010). https://doi.org/10.1007/s12393-010-9029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-010-9029-x

Keywords

Navigation