[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Measuring Anthropomorphism of a New Humanoid Hand-Arm System

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

Existing perceptional and analytical techniques for quantifying anthropomorphism of robotic hand-arm systems have significant limitations. The former is based on subjective appraisals by human observers, which are prone to biases. The latter frequently disregards the manipulability of the robotic hand-arm system leading to potentially flawed estimation of anthropomorphism. Additionally, prior methodologies have predominantly focused on assessing anthropomorphism of robotic hands while paying scant attention to that of robotic arms. In this paper, we propose an analytical method to quantify the functional anthropomorphism of robotic hand-arm systems. In this method, relative workspace coverage and manipulability of the robot arm and fingers are compared with those of the human arm and fingers. The proposed methodology is then used to quantify functional anthropomorphism of several hand-arm systems, including our new full-scale humanoid robot hand-arm system, the iCub hand-arm system, and robot arms such as Atlas, H20, and Hubo2+/Sophia, as well as robot hands like Shadow, DEXMART, and SEOULTECH. Our new robot hand-arm system has a functional anthropomorphism of 23.31%, while iCub’s is 35.96%. Atlas, H20, and Hubo2+/Sophia robot arm have functional anthropomorphism of 24.79%, 12.82%, and 29.64%, respectively, while Shadow, DEXMART, and SEOULTECH robot hands have functional anthropomorphism of 36.96%, 48.91%, and 25.33%, respectively. The proposed method is an effective tool for designers to quantitatively compare the human-likeness of both new and existing robotic hand-arm systems and identify possible improvements in the design. We further conducted a series of kinematic experiments to ascertain the kinematic capabilities of our humanoid robot hand-arm system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Duffy B (2003) Anthropomorphism and the social robot. Robot Auton Syst 42:177–190. https://doi.org/10.1016/s0921-8890(02)00374-3

    Article  MATH  Google Scholar 

  2. Ramanathan M, Mishra N, Thalmann N (2019) Nadine humanoid social robotics platform. Adv Comput Graph. https://doi.org/10.1007/978-3-030-22514-8_49

    Article  Google Scholar 

  3. Parviainen J, Coeckelbergh M (2020) The political choreography of the Sophia robot: beyond robot rights and citizenship to political performances for the social robotics market. AI Society 36:715–724. https://doi.org/10.1007/s00146-020-01104-w

    Article  Google Scholar 

  4. Natale L, Bartolozzi C, Nori F et al. (2018) iCub. Humanoid robotics: a reference, pp 291–323. https://doi.org/10.1007/978-94-007-6046-2_21

  5. Pandey A, Gelin R (2018) A mass-produced sociable humanoid robot: pepper: the first machine of its kind. IEEE Robot Autom Magaz 25:40–48. https://doi.org/10.1109/mra.2018.2833157

    Article  Google Scholar 

  6. Prescott T, Robillard J (2021) Are friends electric? The benefits and risks of human-robot relationships. iScience 24:101993. https://doi.org/10.1016/j.isci.2020.101993

    Article  Google Scholar 

  7. Kupferberg A, Glasauer S, Huber M et al (2011) Biological movement increases acceptance of humanoid robots as human partners in motor interaction. AI Soc 26:339–345. https://doi.org/10.1007/s00146-010-0314-2

    Article  Google Scholar 

  8. Mavrogiannis C, Liarokapis M, Kyriakopoulos K (2015) Quantifying anthropomorphism of robot arms. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). https://doi.org/10.1109/iros.2015.7353954

  9. Roesler E, Manzey D, Onnasch L (2021) A meta-analysis on the effectiveness of anthropomorphism in human-robot interaction. Sci Robot. https://doi.org/10.1126/scirobotics.abj5425

    Article  Google Scholar 

  10. Ruijten P, Haans A, Ham J, Midden C (2019) Perceived human-likeness of social robots: testing the rasch model as a method for measuring anthropomorphism. Int J Soc Robot 11:477–494. https://doi.org/10.1007/s12369-019-00516-z

    Article  Google Scholar 

  11. Liarokapis M, Artemiadis P, Kyriakopoulos K (2012) Functional Anthropomorphism for human to robot motion mapping. In: 2012 IEEE RO-MAN: The 21st IEEE international symposium on robot and human interactive communication. https://doi.org/10.1109/roman.2012.6343727

  12. Salem M, Eyssel F, Rohlfing K et al (2013) To Err is Human(-like): effects of robot gesture on perceived anthropomorphism and likability. Int J Soc Robot 5:313–323. https://doi.org/10.1007/s12369-013-0196-9

    Article  Google Scholar 

  13. Belkaid M (2016) Interactions between cognitive et emotional processes: a study in neuromimetic mobile and social robotics. In: Hal.inria.fr. https://hal.inria.fr/tel-01482695/. Accessed 17 Jan 2022

  14. Belkaid M, Pessoa L (2020) Emotion in Future Intelligent Machines. arxiv:2009.14810. Accessed 17 Jan 2022

  15. Cameron D, Millings A, Fernando S et al (2018) The effects of robot facial emotional expressions and gender on child-robot interaction in a field study. Connect Sci 30:343–361. https://doi.org/10.1080/09540091.2018.1454889

    Article  Google Scholar 

  16. Spatola N, Wudarczyk O (2020) Implicit attitudes towards robots predict explicit attitudes, semantic distance between robots and humans, anthropomorphism, and prosocial behavior: from attitudes to human-robot interaction. Int J Soc Robot 13:1149–1159. https://doi.org/10.1007/s12369-020-00701-5

    Article  Google Scholar 

  17. Siri G, Marchesi S, Wykowska A, Chiorri C (2021) The personality of a robot an adaptation of the HEXACO - 60 as a Tool for HRI. Soc Robot. https://doi.org/10.1007/978-3-030-90525-5_62

    Article  Google Scholar 

  18. Devaraja R, Maskeliūnas R, Damaševičius R (2020) Design and evaluation of anthropomorphic robotic hand for object grasping and shape recognition. Computers 10:1. https://doi.org/10.3390/computers10010001

    Article  Google Scholar 

  19. Brown C, Asada H (2007) Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In: 2007 IEEE/RSJ international conference on intelligent robots and systems. https://doi.org/10.1109/iros.2007.4399547

  20. Rosmarin J, Asada H (2008) Synergistic design of a humanoid hand with hybrid DC motor - SMA array actuators embedded in the palm. In: 2008 IEEE international conference on robotics and automation. https://doi.org/10.1109/robot.2008.4543299

  21. Li S, Sheng X, Liu H, Zhu X (2014) Design of a myoelectric prosthetic hand implementing postural synergy mechanically. Ind Robot Int J 41:447–455. https://doi.org/10.1108/ir-03-2014-0312

    Article  Google Scholar 

  22. Xu K, Liu H, Du Y, Zhu X (2014) Design of an underactuated anthropomorphic hand with mechanically implemented postural synergies. Adv Robot 28:1459–1474. https://doi.org/10.1080/01691864.2014.958534

    Article  Google Scholar 

  23. Baiyang Sun, Caihua Xiong, Wenrui Chen et al. (2014) A novel design method of anthropomorphic prosthetic hands for reproducing human hand grasping. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society. https://doi.org/10.1109/embc.2014.6945049

  24. Seki T, Nakamura T, Kato R et al. (2013) Development of five-finger multi-DoF myoelectric hands with a power allocation mechanism. In: 2013 IEEE international conference on robotics and automation. https://doi.org/10.1109/icra.2013.6630852

  25. Vande Weghe M, Rogers M, Weissert M, Matsuoka Y (2004) The ACT Hand: design of the skeletal structure. In: IEEE international conference on robotics and automation, 2004 proceedings ICRA ’04 2004. https://doi.org/10.1109/robot.2004.1308775

  26. Jiang L, Liu Y, Yang D, Liu H (2018) A synthetic framework for evaluating and designing an anthropomorphic prosthetic hand. J Bionic Eng 15:69–82. https://doi.org/10.1007/s42235-017-0005-5

    Article  Google Scholar 

  27. Tian L, Thalmann N, Zheng J, Thalmann D (2019) Design of a Highly Biomimetic and Fully-Actuated Robotic Finger. In: 2019 IEEE symposium series on computational intelligence (SSCI). https://doi.org/10.1109/ssci44817.2019.9002870

  28. Light CM, Chappell PH, Kyberd PJ (2002) Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: Normative data, reliability, and validity. Arch Phys Med Rehabil 83:776–783. https://doi.org/10.1053/apmr.2002.32737

    Article  Google Scholar 

  29. Mathiowetz V, Volland G, Kashman N, Weber K (1985) Adult norms for the box and block test of manual dexterity. Am J Occup Ther 39:386–391. https://doi.org/10.5014/ajot.39.6.386

    Article  Google Scholar 

  30. Vazhapilli Sureshbabu A, Metta G, Parmiggiani A (2019) A systematic approach to evaluating and benchmarking robotic hands-the FFP index. Robotics 8:7. https://doi.org/10.3390/robotics8010007

    Article  Google Scholar 

  31. Krumlinde-Sundholm L, Holmefur M, Kottorp A, Eliasson A-C (2007) The assisting hand assessment: current evidence of validity, reliability, and responsiveness to change. Dev Med Child Neurol 49:259–264. https://doi.org/10.1111/j.1469-8749.2007.00259.x

    Article  Google Scholar 

  32. Falco J, Van Wyk K, Liu S, Carpin S (2015) Grasping the performance: facilitating replicable performance measures via benchmarking and standardized methodologies. IEEE Robot Autom Magaz 22:125–136. https://doi.org/10.1109/mra.2015.2460891

    Article  Google Scholar 

  33. Huamán Quispe A, Ben Amor H, Christensen HI (2017) A taxonomy of benchmark tasks for robot manipulation. Proc Adv Robot. https://doi.org/10.1007/978-3-319-51532-8_25

    Article  Google Scholar 

  34. Llop-Harillo I, Pérez-González A, Starke J, Asfour T (2019) The anthropomorphic hand assessment protocol (AHAP). Robot Auton Syst 121:103259. https://doi.org/10.1016/j.robot.2019.103259

    Article  Google Scholar 

  35. Llop-Harillo I, Pérez-González A (2017) System for the experimental evaluation of anthropomorphic hands. Application to a new 3D-printed prosthetic hand prototype. Int Biomech 4:50–59. https://doi.org/10.1080/23335432.2017.1364666

    Article  Google Scholar 

  36. Vazhapilli Sureshbabu A, Metta G, Parmiggiani A (2019) A systematic approach to evaluating and benchmarking robotic hands-the FFP index. Robotics 8:7. https://doi.org/10.3390/robotics8010007

    Article  Google Scholar 

  37. Andrés-Esperanza J, Iserte-Vilar JL, Llop-Harillo I, Pérez-González A (2022) Affordable 3D-printed tendon prosthetic hands: expectations and benchmarking questioned. Int J Eng Sci Technol 31:101053. https://doi.org/10.1016/j.jestch.2021.08.010

    Article  Google Scholar 

  38. Vahrenkamp N, Arnst H, Wachter M et al. (2016) Workspace analysis for planning human-robot interaction tasks. In: 2016 IEEE-RAS 16th international conference on humanoid robots (humanoids). https://doi.org/10.1109/humanoids.2016.7803437

  39. Lenzi T, Lipsey J, Sensinger J (2016) The RIC Arm-a small anthropomorphic transhumeral prosthesis. IEEE/ASME Trans Mechatron 21:2660–2671. https://doi.org/10.1109/tmech.2016.2596104

    Article  Google Scholar 

  40. Feix T, Romero J, Ek CH et al (2013) A metric for comparing the anthropomorphic motion capability of Artificial Hands. IEEE Trans Rob 29:82–93. https://doi.org/10.1109/tro.2012.2217675

    Article  Google Scholar 

  41. Liarokapis M, Artemiadis P, Kyriakopoulos K (2013) Quantifying anthropomorphism of robot hands. In: 2013 IEEE international conference on robotics and automation. https://doi.org/10.1109/icra.2013.6630850

  42. Figueredo LF, Aguiar RC, Chen L et al (2021) Human comfortability: integrating ergonomics and muscular-informed metrics for manipulability analysis during human-robot collaboration. IEEE Robot Autom Lett 6:351–358. https://doi.org/10.1109/lra.2020.3043173

    Article  Google Scholar 

  43. Yoshikawa T (1985) Manipulability of robotic mechanisms. Int J Robot Res 4:3–9. https://doi.org/10.1177/027836498500400201

    Article  Google Scholar 

  44. Vahrenkamp N, Asfour T, Metta G et al. (2012) Manipulability analysis. In: 2012 12th IEEE-RAS international conference on humanoid robots (Humanoids 2012). https://doi.org/10.1109/humanoids.2012.665157

  45. Lee D, Park H, Park J et al (2017) Design of an anthropomorphic dual-arm robot with biologically inspired 8-DOF arms. Intel Serv Robot 10:137–148. https://doi.org/10.1007/s11370-017-0215-z

    Article  Google Scholar 

  46. Abdel-Malek K, Yu W, Yang J (2004) Placement of robot manipulators to maximize dexterity. Int J Robot Autom. https://doi.org/10.2316/journal.206.2004.1.206-2029

    Article  Google Scholar 

  47. Cutkosky M (1989) On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans Robot Autom 5:269–279. https://doi.org/10.1109/70.34763

    Article  Google Scholar 

  48. Fryar C, Gu Q, Ogden C, Flegal K (2016) Anthropometric reference data for children and adults; United States, 2011-2014. In: Stacks.cdc.gov. https://stacks.cdc.gov/view/cdc/40572. Accessed 18 Jan 2022

  49. Winter D (2009) Biomechanics and motor control of human movement. Wiley, Hoboken, NJ

    Book  Google Scholar 

  50. Greiner T (1991) Hand anthropometry of us army personnel

  51. Lenarčič J, Umek A (1994) Simple model of human arm reachable workspace. IEEE Trans Syst Man Cybn 24(8):1239–46. https://doi.org/10.1109/21.299704

    Article  Google Scholar 

  52. The physiology of the joints. volume 1, Upper Limb. second edition. by I. A. Kapandji, Paris. 11 \(\times \) 9 in pp 203, with 346 illustrations (1970) Edinburgh: E. amp; S. Livingstone Ltd. 50s. Br J Surg 57:640–640. https://doi.org/10.1002/bjs.1800570821

  53. Buchholz B, Armstrong T, Goldstein S (1992) Anthropometric data for describing the kinematics of the human hand. Ergonomics 35:261–273. https://doi.org/10.1080/00140139208967812

    Article  Google Scholar 

  54. Nagarsheth HJ, Savsani PV, Patel MA (2008) Modeling and dynamics of human arm. In: 2008 IEEE international conference on automation science and engineering. https://doi.org/10.1109/coase.2008.4626407

  55. Human Body Part Weights. In: Robslink.com. http://robslink.com/SAS/democd79/body_part_weights.htm. Accessed 18 Jan 2022

  56. Rader S, Kaul L, Fischbach H et al. (2016) Design of a high-performance humanoid dual arm system with inner shoulder joints. In: 2016 IEEE-RAS 16th international conference on humanoid robots (humanoids). https://doi.org/10.1109/humanoids.2016.7803325

  57. Williams II R (2017)In: Ohio.edu. https://www.ohio.edu/mechanical-faculty/williams/html/PDF/BaxterKinematics.pdf. Accessed 18 Jan 2022

  58. Hagn U, Nickl M, Jörg S et al (2008) The DLR MIRO: a versatile lightweight robot for surgical applications. Ind Robot Int J 35:324–336. https://doi.org/10.1108/01439910810876427

    Article  Google Scholar 

  59. Albu-Schäffer A, Haddadin S, Ott C et al (2007) The DLR lightweight robot: design and control concepts for robots in human environments. Ind Robot Int J 34:376–385. https://doi.org/10.1108/01439910710774386

    Article  Google Scholar 

  60. Shigemi S (2018) Asimo and humanoid robot research at Honda. Human Robot. https://doi.org/10.1007/978-94-007-6046-2_9

    Article  Google Scholar 

  61. Cooper S, Di Fava A, Vivas C, et al (2020) Ari: the social assistive robot and companion. In: 2020 29th IEEE international conference on robot and human interactive communication (RO-MAN). https://doi.org/10.1109/ro-man47096.2020.9223470

  62. Asano Y, Okada K, Inaba M (2017) Design principles of a human mimetic humanoid: humanoid platform to study human intelligence and internal body system. Sci Robot. https://doi.org/10.1126/scirobotics.aaq0899

    Article  Google Scholar 

  63. General Purpose 3D Printing Materials. In: Formlabs. https://formlabs.com/materials/standard/#clear. Accessed 18 Jan 2022

  64. Huber J, Fleck N, Ashby M (1997) The selection of mechanical actuators based on performance indices. Proc R Soc Lond Ser A Math Phys Eng Sci 453:2185–2205. https://doi.org/10.1098/rspa.1997.0117

    Article  Google Scholar 

  65. Hunter I, Hollerbach J, Ballantyne J (1991) A comparative analysis of actuator technologies for robotics. Robot Rev 2:299–342

    Google Scholar 

  66. Bertomeu-Motos A, Blanco A, Badesa F et al (2018) Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices. J Neuroeng Rehabil. https://doi.org/10.1186/s12984-018-0348-0

    Article  Google Scholar 

  67. Rath S (2011) Hand kinematics: application in clinical practice. Indian J Plast Surg 44:178. https://doi.org/10.4103/0970-0358.85338

    Article  Google Scholar 

  68. Light CM, Chappell PH, Kyberd PJ (2002) Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: Normative data, reliability, and validity. Arch Phys Med Rehabil 83:776–783. https://doi.org/10.1053/apmr.2002.32737

    Article  Google Scholar 

  69. Peña-Pitarch E, Falguera NT, Yang JJ (2012) Virtual human hand: model and kinematics. Comput Methods Biomech Biomed Eng 17:568–579. https://doi.org/10.1080/10255842.2012.702864

    Article  Google Scholar 

  70. Sinha AK, Goh GL, Yeong WY, Cai Y (2022) Ultra-low-cost, crosstalk-free, fast-responding, wide-sensing-range tactile fingertip sensor for smart gloves. Adv Mater Interfaces 9:2200621. https://doi.org/10.1002/admi.202200621

  71. Corke P (1996) A robotics toolbox for MATLAB. IEEE Robot Autom Magaz 3:24–32. https://doi.org/10.1109/100.486658

    Article  Google Scholar 

  72. Du C, Lee K, Newman W (2014) Manipulation planning for the Atlas humanoid robot. In: 2014 IEEE international conference on robotics and biomimetics (ROBIO 2014). https://doi.org/10.1109/robio.2014.7090482

  73. Khokar K, Beeson P, Burridge R (2015) Implementation of KDL inverse kinematics routine on the atlas humanoid robot. Proc Comput Sci 46:1441–1448. https://doi.org/10.1016/j.procs.2015.02.063

    Article  Google Scholar 

  74. Ali M, Liu H, Stoll N, Thurow K (2016) Kinematic analysis of 6-DOF Arms for H20 mobile robots and labware manipulation for transportation in life science labs. J Autom Mobile Robot Intell Syst 10:40–52. https://doi.org/10.14313/jamris_4-2016/30

    Article  Google Scholar 

  75. Orsquo;Flaherty R, Vieira P, Grey M et al. (2013) Kinematics and Inverse Kinematics for the Humanoid Robot HUBO2+. In: Smartech.gatech.edu. https://smartech.gatech.edu/handle/1853/46250. Accessed 18 Jan 2022

  76. Park S, Lee H, Hanson D, Oh P (2018) Sophia-Hubo’s arm motion generation for a handshake and gestures. 2018 15th international conference on ubiquitous robots (UR). https://doi.org/10.1109/urai.2018.8442200

  77. Carbone G, Gerding E, Corves B et al (2020) Design of a Two-DOFs driving mechanism for a motion-assisted finger exoskeleton. Appl Sci 10:2619. https://doi.org/10.3390/app10072619

    Article  Google Scholar 

  78. Belter J, Segil J, Dollar A, Weir R (2013) Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. Accessed 18 Jan 2022

  79. Napier JR (1993) Tuttle RH (1993) Hands. Princeton University Press, Princeton

    Google Scholar 

  80. Nava R. NE, Metta G, Sandini G, Tikhanoff V (2008) Kinematic and dynamic simulations for the design of icub upper-body structure. Volume 4: Fatigue and fracture; fluids engineering; heat transfer; mechatronics; micro and nano technology; optical engineering; robotics; systems engineering; industrial applications. https://doi.org/10.1115/esda2008-59082

  81. Tech iC ICUB Foward Kinematics - arms. In: iCub FW Kinematics Arms - iCub Tech Docs. https://icub-tech-iit.github.io/documentation/icub_kinematics/icub-forward-kinematics/icub-forward-kinematics-arms/. Accessed 28 Nov 2022

  82. McDowell MA, Fryar CD, Ogden CL, Flegal KM (2008) Anthropometric reference data for children and adults: United States, 2003–2006. PsycEXTRA Dataset. https://doi.org/10.1037/e623932009-001

    Article  Google Scholar 

  83. Walker R (2021) Shadow dextrous hand technical specification. Shadow Robot Company

  84. Schmitz A, Pattacini U, Nori F, et al (2010) Design, realization and sensorization of the dexterous icub hand. In: 2010 10th IEEE-RAS international conference on humanoid robots. https://doi.org/10.1109/ichr.2010.5686825

  85. Tech iC Icub foward kinematics - fingers. In: iCub FW Kinematics Fingers - iCub Tech Docs. https://icub-tech-iit.github.io/documentation/icub_kinematics/icub-forward-kinematics/icub-forward-kinematics-fingers/. Accessed 28 Nov 2022

  86. Palli G, Melchiorri C, Vassura G et al (2014) The DEXMART hand: mechatronic design and experimental evaluation of synergy-based control for human-like grasping. Int J Robot Res 33:799–824. https://doi.org/10.1177/0278364913519897

  87. Min S, Yi S (2021) Development of cable-driven anthropomorphic robot hand. IEEE Robotics and Automation Letters 6:1176–1183. https://doi.org/10.1109/lra.2021.3056375

    Article  Google Scholar 

  88. Shim JK, Oliveira MA, Hsu J et al (2006) Hand digit control in children: Age-related changes in hand digit force interactions during maximum flexion and extension force production tasks. Exp Brain Res 176:374–386. https://doi.org/10.1007/s00221-006-0629-x

    Article  Google Scholar 

  89. Peña-Pitarch E, Falguera NT, Yang JJ (2012) Virtual human hand: model and kinematics. Comput Methods Biomech Biomed Eng 17:568–579. https://doi.org/10.1080/10255842.2012.702864

    Article  Google Scholar 

  90. (2021) Sophia Beta. In: Hanson Robotics. https://www.hansonrobotics.com/sophia-2020/. Accessed 28 Nov 2022

  91. H20.In: Dr Robot Inc.: WIFI 802.11 robot, network-based robot, robotic, Robot Kit, humanoid robot, OEM solution. http://www.drrobot.com/products_H20.asp. Accessed 28 Nov 2022

  92. Oz Robotics (2020) Atlas robot. In: Oz Robotics. https://ozrobotics.com/tag/atlas-robot/. Accessed 28 Nov 2022

  93. Tian L, Zheng J, Cai Y, Halil MFKBA, Thalmann NM, Thalmann D, Li H (2022) Fast 3D modeling of prosthetic robotic hands based on a multi-layer deformable design. Int J Bioprint. https://doi.org/10.18063/ijb.v8i1.406

Download references

Funding

This research is supported by the National Research Foundation, Singapore under its International Research Centres in Singapore Funding Initiative. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyu Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, A.K., Thalmann, N.M. & Cai, Y. Measuring Anthropomorphism of a New Humanoid Hand-Arm System. Int J of Soc Robotics 15, 1341–1363 (2023). https://doi.org/10.1007/s12369-023-00999-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-023-00999-x

Keywords

Navigation