[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A Long-Term Autonomous Robot at a Care Hospital: A Mixed Methods Study on Social Acceptance and Experiences of Staff and Older Adults

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

Robot technology could be a future means to ameliorate predicted staff shortage in elder care due to the current demographic change. This study focuses on the evaluation of a long-term autonomous robot that was deployed in a real-world scenario at a care facility for older adults with severe multimorbidity and dementia. Social acceptance and user experience were assessed using a mixed-method design consisting of observations (12 h), ten interviews and 70 questionnaires with members of staff. Findings show that the interacting modalities have to meet the very needs of specific end-user groups and that the perceived utility of a robot is very much tied to its tasks and proper functioning. Social acceptance was ambivalent. On one hand the robot was integrated into daily routines, but on the other hand staff was not willing to share their work space with a robotic aid and saw the introduction of robots in eldercare as an inevitable development. Findings on user experience showed that staff and older adults were interested in and excited about the robot. Still it is necessary to equip the robot with meaningful communication abilities as well as cues that enhance the predictability of its behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Provided by audiotranscription.de.

References

  1. Broadbent E, Stafford R, MacDonald B (2009) Acceptance of healthcare robots for the older populations: review and future directions. Int J Soc Robot 1(4):319–330. doi:10.1007/s12369-009-0030-6

    Article  Google Scholar 

  2. Broekens J, Heerink M, Rosendal H (2009) Assistive social robots in elderly care: a review. Gerontechnology 8(2):94–103. doi:10.4017/gt.2009.08.02.002.00

    Article  Google Scholar 

  3. Frennert S, Eftring H, Östlund B (2013) What older people expect of robots: a mixed methods approach. In: Social robotics. Springer, pp 19–29. doi:10.1007/978-3-319-02675-6_3

  4. Heerink M, Krose B, Evers V, Wielinga B The influence of a robot’s social abilities on acceptance by elderly users. RO-MAN, the 15th IEEE International Symposium on Robot and Human Interactive Communication, IEEE, pp 521–526. doi:10.1109/ROMAN.2006.314442

  5. Kachouie R, Sedighadeli S, Khosla R, Chu M-T (2014) Socially assistive robots in elderly care: a mixed-method systematic literature review. Int J Hum Comput Interact 30(5):369–393. doi:10.1080/10447318.2013.873278

    Article  Google Scholar 

  6. Louie W-YG, McColl D, Nejat G (2013) Acceptance and attitudes towards a human-like socially assistive robot by older adults. Assist Technol. doi:10.1080/10400435.2013.869703

    Google Scholar 

  7. Smarr C-A, Mitzner TL, Beer JM, Prakash A, Chen TL, Kemp CC, Rogers WA (2014) Domestic robots for older adults: attitudes, preferences, and potential. Int J Soc Robot 6(2):229–247. doi:10.1007/s12369-013-0220-0

    Article  Google Scholar 

  8. Stafford RQ, MacDonald BA, Jayawardena C, Wegner DM, Broadbent E (2014) Does the robot have a mind? Mind perception and attitudes towards robots predict use of an eldercare robot. Int J Soc Robot 6(1):17–32. doi:10.1007/s12369-013-0186-y

    Article  Google Scholar 

  9. Heerink M, Ben K, Evers V, Wielinga B (2008) The influence of social presence on acceptance of a companion robot by older people. J Phys Agents 2(2):33–40. http://hdl.handle.net/11245/1.285120

  10. Smarr C-A, Prakash A, Beer JM, Mitzner TL, Kemp CC, Rogers WA (2012) Older adults preferences for and acceptance of robot assistance for everyday living tasks. Proc Hum Factors Ergon Soc Annu Meet 1:153–157. doi:10.1177/1071181312561009

    Article  Google Scholar 

  11. Wu Y-H, Cristancho-Lacroix V, Fassert C, Faucounau V, de Rotrou J, Rigaud A-S (2014) The attitudes and perceptions of older adults with mild cognitive impairment toward an assistive robot. J Appl Gerontol. doi:10.1177/0733464813515092

    Google Scholar 

  12. Koertner T, Schmid A, Batko-Klein D, Gisinger C (2014) Meeting requirements of older users? Robot prototype trials in a home-like environment. In: Universal access in human–computer interaction aging and assistive environments. Lecture notes in computer science, vol 8515, pp 660–671. doi:10.1007/978-3-319-07446-7_63

  13. Koertner T, Schmid A, Batko-Klein D, Gisinger C, Huber A, Lammer L, Vincze M (2012) How social robots make older users really feel well—a method to assess users’ concepts of a social robotic assistant. In: Lecture notes in computer science, vol 7621, pp 138–147. doi:10.1007/978-3-642-34103-8_14

  14. Torta E, Werner F, Johnson DO, Juola JF, Cuijpers RH, Bazzani M, Oberzaucher J, Lemberger J, Lewy H, Bregman J (2014) Evaluation of a small socially-assistive humanoid robot in intelligent homes for the care of the elderly. J Intell Robot Syst 76(1):57–71. doi:10.1007/s10846-013-0019-0

    Article  Google Scholar 

  15. Johnson DO, Cuijpers RH, Juola JF, Torta E, Simonov M, Frisiello A, Bazzani M, Yan W, Weber C, Wermter S (2014) Socially assistive robots: a comprehensive approach to extending independent living. Int J Soc Robot 6(2):195–211. doi:10.1007/s12369-013-0217-8

    Article  Google Scholar 

  16. Heerink M, Kröse B, Evers V, Wielinga B (2010) Assessing acceptance of assistive social agent technology by older adults: the almere model. Int J Soc Robot 2(4):361–375. doi:10.1007/s12369-010-0068-5

    Article  Google Scholar 

  17. Takayanagi K, Kirita T, Shibata T (2014) Comparison of verbal and emotional responses of elderly people with mild/moderate dementia and those with severe dementia in responses to seal robot, PARO. Front Aging Neurosci 6:1–5. doi:10.3389/fnagi.2014.00257

    Article  Google Scholar 

  18. Kim Y, Kwak SS, Kim M (2013) Am I acceptable to you? Effect of a robot’s verbal language forms on people’s social distance from robots. Comput Hum Behav 29(3):1091–1101. doi:10.1016/j.chb.2012.10.001

    Article  Google Scholar 

  19. Wu Y-H, Wrobel J, Cornuet M, Kerhervé H, Damnée S, Rigaud A-S (2014) Acceptance of an assistive robot in older adults: a mixed-method study of human–robot interaction over a 1-month period in the Living Lab setting. Clin Interv Aging 9:801–811. doi:10.2147/CIA.S56435

    Article  Google Scholar 

  20. Johnson DO, Cuijpers RH, Pollmann K, van de Ven AA (2016) Exploring the entertainment value of playing games with a humanoid robot. Int J Soc Robot 8(2):247–269. doi:10.1007/s12369-015-0331-x

    Article  Google Scholar 

  21. Thrun S (2004) Toward a framework for human–robot interaction. Hum Comput Interact 19(1–2):9–24. doi:10.1207/s15327051hci1901&2

    Article  Google Scholar 

  22. Yanco HA, Drury JL (2004) Classifying human–robot interaction: an updated taxonomy. SMC 3:2841–2846. doi:10.1109/ICSMC.2004.1400763

    Google Scholar 

  23. Yanco HA, Drury JL (2002) A taxonomy for human–robot interaction. In: Proceedings of the AAAI fall symposium on human–robot interaction, pp 111–119

  24. Hebesberger D, Körtner T, Pripfl J, Gisinger C, Hanheide M (2015) What do staff in eldercare want a robot for? An assessment of potential tasks and user requirements for a long-term deployment. In: IROS, international conference on intelligent robots and systems, workshop paper. http://eprints.lincoln.ac.uk/18860/

  25. American Psychiatric Association, DSM-5 (2013) Diagnostic and statistical manual of mental disorders, vol 5. American Psychiatric Publishing, Washington

    Book  Google Scholar 

  26. Pusswald G, Vass K (2011) Multiple Sklerose. In: Lehrner et al (eds) Klinische Neruopsychologie. Springer, Wien

    Google Scholar 

  27. Bartneck C, Kulić D, Croft E, Zoghbi S (2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int J Soc Robot 1(1):71–81. doi:10.1007/s12369-008-0001-3

    Article  Google Scholar 

  28. Heerink M, Kröse B, Evers V, Wielinga B (2009) Influence of social presence on acceptance of an assistive social robot and screen agent by elderly users. Adv Robot 23(14):1909–1923. doi:10.1163/016918609X12518783330289

    Article  Google Scholar 

  29. Steinfeld A, Fong T, Kaber D, Lewis M, Scholtz J, Schultz A, Goodrich M (2006) Common metrics for human–robot interaction. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on human–robot interaction, pp 33–40. doi:10.1145/1121241.1121249

  30. Weiss A, Bernhaupt R, Tscheligi M (2011) The USUS evaluation framework for user-centered HRI. In: New frontiers in human–robot interaction. Benjamins, Amsterdam, pp 89–110

  31. Teddlie C, Tashakkori A (2006) A general typology of research designs featuring mixed methods. Res Sch 13(1):12–28

    Google Scholar 

  32. Greene JC, Caracelli VJ, Graham WF (1989) Toward a conceptual framework for mixed-method evaluation designs. Educ Eval Policy Anal 11(3):255–274. doi:10.3102/01623737011003255

    Article  Google Scholar 

  33. Johnson RB, Onwuegbuzie AJ, Turner LA (2007) Toward a definition of mixed methods research. J Mixed Methods Res 1(2):112–133. doi:10.1177/1558689806298224

    Article  Google Scholar 

  34. Yin RK (2006) Mixed methods research: are the methods genuinely integrated or merely parallel. Res Sch 13(1):41–47

    Google Scholar 

  35. Collins KM, Onwuegbuzie AJ, Sutton IL (2006) A model incorporating the rationale and purpose for conducting mixed methods research in special education and beyond. Learn Disabil Contemp J 4(1):67–100

    Google Scholar 

  36. Kondracki NL, Wellman NS, Amundson DR (2002) Content analysis: review of methods and their applications in nutrition education. J Nutr Educ Behav 34(4):224–230. doi:10.1016/S1499-4046(06)60097-3

    Article  Google Scholar 

  37. Hsieh H-F, Shannon SE (2005) Three approaches to qualitative content analysis. Qual Health Res 15(9):1277–1288. doi:10.1177/1049732305276687

  38. Lamnek S (2010) Qualitative Sozialforschung, 5th edn. Beltz, Weinheim

    Google Scholar 

  39. Maxwell JA (1992) Understanding and validity in qualitative research. Harvard Educ Review 62(3):279–301. doi:10.17763/haer.62.3.8323320856251826

    Article  Google Scholar 

  40. Onwuegbuzie AJ, Johnson RB (2006) The validity issue in mixed research. Res Sch 13(1):48–63

    Google Scholar 

  41. Flick U (2004) Qualitaitve Sozialforschung, Eine Einführung, 2nd edn. Rowohlt Taschenbuchverlag, Reinbek bei Hamburg

    Google Scholar 

  42. Ekman P, Friesen WV (1971) Constants across cultures in the face and emotion. J Personal Soc Psychol 17(2):124. doi:10.1037/h0030377

    Article  Google Scholar 

  43. Morse J, Niehaus L (2009) Mixed method design principles and procedures. Left Coast Press, Walnut Creek

    Google Scholar 

  44. Guest G (2013) Describing mixed methods research an alternative to typologies. J Mixed Methods Res 7(2):141–151. doi:10.1177/1558689812461179

    Article  Google Scholar 

  45. Johnson RB, Onwuegbuzie AJ (2004) Mixed methods research: a research paradigm whose time has come. Educ Res 33 (7):14–26. Stable URL:http://www.jstor.org/stable/3700093

  46. Salvini P, Laschi C, Dario P (2010) Design for acceptability: improving robots’ coexistence in human society. Int J Soc Robot 2(4):451–460. doi:10.1007/s12369-010-0079-2

    Article  Google Scholar 

  47. Glende S, Conrad I, Krezdorn L, Klemcke S, Krätzel C (2016) Increasing the acceptance of assisitve robots for older people through marketing strategies based on stakeholder needs. Int J Soc Robot 8(3):355–369. doi:10.1007/s12369-015-0328-5

    Article  Google Scholar 

  48. Hudson J, Orviska M, Hunday J (2016) People’s attitudes to robots in caring for the elderly. Int J Soc Robot. doi:10.1007/s12369-016-0384-5

    Google Scholar 

  49. Enz S, Diruf M, Spielhagen C, Zoll C, Vargas PA (2011) The social role of robots in the future—explorative measurement of hopes and fears. Int J Soc Robot 3(3):263–271. doi:10.1007/s12369-011-0094-y

    Article  Google Scholar 

  50. Dautenhahn K, Woods S, Kaouri C, Walters ML, Koay KL, Werry I (2005) What is a robot companion-friend, assistant or butler? In: IROS, international conference on intelligent robots and systems. IEEE, pp 1192–1197. doi:10.1109/IROS.2005.1545189

  51. Kuo IH, Rabindran JM, Broadbent E, Lee YI, Kerse N, Stafford R, MacDonald BA (2009) Age and gender factors in user acceptance of healthcare robots. In: RO-MAN, the 18th IEEE international symposium on robot and human interactive communication. IEEE, pp 214–219. doi:10.1109/ROMAN.2009.5326292

  52. May AD, Dondrup C, Hanheide M (2015) Show me your moves! Conveying navigation intention of a mobile robot to humans. In: ECMR, European conference on mobile robots. doi:10.1109/ECMR.2015.7324049

Download references

Acknowledgements

The authors want to thank members of staff for their interviews and participation in our study, and the STRANDS project partners. The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No. 600623, STRANDS. (http://strands.acin.tuwien.ac.at/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Hebesberger.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Ethical Standards

The study received ethical approval from the ethics board at the care facility “Haus der Barmherzeigkeit”, Vienna, Austria. This board consists of different professionals from the care context.

Appendices

Appendix 1

Items of Online Survey

See Table 1.

Table 1 Items used in the online survey and answer categories of the 5-point Likert Scale

Appendix 2

Guideline for the staff interviews

See Table 2.

Table 2 Interview guideline for post-trial staff interviews according to the factors of the USUS-framework

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebesberger, D., Koertner, T., Gisinger, C. et al. A Long-Term Autonomous Robot at a Care Hospital: A Mixed Methods Study on Social Acceptance and Experiences of Staff and Older Adults. Int J of Soc Robotics 9, 417–429 (2017). https://doi.org/10.1007/s12369-016-0391-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-016-0391-6

Keywords

Navigation