[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Human-Like Interaction Skills for the Mobile Communication Robot Robotinho

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

The operation of robotic tour guides in public museums leads to a variety of interactions of these complex technical systems with humans of all ages and with different technical backgrounds. Interacting with a robot is a new experience for many visitors. An intuitive user interface, preferable one that resembles the interaction between human tour guides and visitors, simplifies the communication between robot and visitors. To allow for supportive behavior of the guided persons, predictable robot behavior is necessary. Humanoid robots are able to resemble human motions and behaviors and look familiar to human users that have not interacted with robots so far. Hence, they are particularly well suited for this purpose.

In this work, we present our anthropomorphic mobile communication robot Robotinho. It is equipped with an expressive communication head to display emotions. Its multimodal dialog system incorporates gestures, facial expression, body language, and speech. We describe the behaviors that we developed for interaction with inexperienced users in a museum tour guide scenario. In contrast to prior work, Robotinho communicated with the guided persons during navigation between exhibits, not only while explaining an exhibit. We report qualitative and quantitative results from evaluations of Robotinho in RoboCup@Home competitions and in a science museum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Best of NimbRo@Home (2009) http://www.nimbro.net/@Home/videos/RoboCup_2009_NimbRo@Home.wmv

  2. The mobile, full-body humanoid, museum tour guide Robotinho (2013) http://www.nimbro.net/movies/robotinho/robotinho_tourguide.wmv

  3. Robotinho—the communication robot (2013) http://www.nimbro.net/movies/robotinho/robotinho_static.wmv

  4. Robotinho conducts the 12 cellists of the Berlin Philharmonic (2013) http://www.nimbro.net/movies/robotinho/Robotinho_conducts.wmv

  5. Testing the museum tour guide robot Robotinho (2013) http://www.nimbro.net/movies/DMB10/DMB_Robotinho_2010_low_res.wmv

  6. Aoyama K, Shimomura H (2005) Real world speech interaction with a humanoid robot on a layered robot behavior control architecture. In: Proceedings of the IEEE international conference on robotics and automation (ICRA)

    Google Scholar 

  7. Beck A, Stevens B, Bard KA, Cañamero L (2012) Emotional body language displayed by artificial agents. Interact Intell Syst 2(1):2:1–2:29

    Google Scholar 

  8. Behnke S, Stückler J, Schreiber M (2009) NimbRo KidSize 2009 team description. In: RoboCup 2009 humanoid league team descriptions

    Google Scholar 

  9. Bennewitz M, Faber F, Joho D, Behnke S (2007) Intuitive multimodal interaction with communication robot Fritz. In: Humanoid robots: human-like machines. Intech, Vienna

    Google Scholar 

  10. Bischoff R, Graefe V (2002) Demonstrating the humanoid robot HERMES at an exhibition: a long-term dependability test. In: Proceedings of the IEEE international conference on intelligent robots and systems (IROS); workshop on robots at exhibitions

    Google Scholar 

  11. Borst C, Wimbock T, Schmidt F, Fuchs M, Brunner B, Zacharias F, Giordano P, Konietschke R, Sepp W, Fuchs S, Rink C, Albu-Schaffer A, Hirzinger G (2009) Rollin’ Justin—mobile platform with variable base. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 1597–1598

    Google Scholar 

  12. Breazeal C (2002) Designing sociable robots. MIT Press, Cambridge

    Google Scholar 

  13. Breazeal C, Brooks A, Gray J, Homan G, Kidd C, Lee H, Lieberman J, Lockerd A, Chilongo D (2004) Tutelage and collaboration for humanoid robots. Int J Humanoid Robot 1(2):315–348

    Article  Google Scholar 

  14. Burgard W, Cremers A, Fox D, Hähnel D, Lakemeyer G, Schulz D, Steiner W, Thrun S (1999) Experiences with an interactive museum tour-guide robot. Artif Intell 114(1–2):3–55

    Article  MATH  Google Scholar 

  15. Cui J, Zha H, Zhao H, Shibasaki R (2008) Multi-modal tracking of people using laser scanners and video camera. Image Vis Comput 26(2):240–252

    Article  Google Scholar 

  16. Dautenhahn K, Walters M, Woods S, Koay K, Nehaniv C, Sisbot A, Alami R, Simeon T (2006) How may I serve you?: a robot companion approaching a seated person in a helping context. In: Proceedings of the ACM/IEEE international conference on human-robot interaction (HRI)

    Google Scholar 

  17. Faber F, Bennewitz M, Behnke S (2008) Controlling the gaze direction of a humanoid robot with redundant joints. In: Proceedings of the international symposium on robot and human interactive communication (RO-MAN)

    Google Scholar 

  18. Faber F, Bennewitz M, Eppner C, Görög A, Gonsior C, Joho D, Schreiber M, Behnke S (2009) The humanoid museum tour guide Robotinho. In: Proceedings IEEE-RAS international conference on humanoid robots (Humanoids)

    Google Scholar 

  19. Fox D (2003) Adapting the sample size in particle filters through KLD-sampling. Int J Robot Res 22(12):985–1003

    Article  Google Scholar 

  20. Gerkey B, Vaughan RT, Howard A (2003) The Player/Stage project: tools for multi-robot and distributed sensor systems. In: Proceedings of the international conference on advanced robotics (ICAR)

    Google Scholar 

  21. Gorostiza J, Khamis RBA, Malfaz M, Pacheco R, Rivas R, Corrales A, Delgado E, Salichs M (2006) Multimodal human-robot interaction framework for a personal robot. In: Proceedings of the international symposium on robot and human interactive communication (RO-MAN)

    Google Scholar 

  22. Gouaillier D, Hugel V, Blazevic P, Kilner C, Monceaux J, Lafourcade P, Marnier B, Serre J, Maisonnier B (2009) Mechatronic design of NAO humanoid. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 769–774

    Google Scholar 

  23. Grisetti G, Stachniss C, Burgard W (2007) Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans Robot. doi:10.1109/TRO.2006.889486

    Google Scholar 

  24. Hart P, Nilson N, Raphael B (1968) A formal basis for the heuristic determination of minimal cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

    Article  Google Scholar 

  25. Hristoskova A, Aguero C, Veloso M, Turck FD (2012) Heterogeneous context-aware robots providing a personalized building tour. Int J Adv Robot Syst. doi:10.5772/54797

    Google Scholar 

  26. Kuhn H (1955) The Hungarian method for the assignment problem. Nav Res Logist Q 2(1):83–97

    Article  Google Scholar 

  27. Kȩdzierski J, Muszyński R, Zoll C, Oleksy A, Frontkiewicz M (2013) Emys—emotive head of a social robot. Int J Soc Robot 5(2):237–249

    Article  Google Scholar 

  28. Loquendo S.p.A. (2009) Vocal technology and services. loquendo.com

  29. Matsui D, Minato T, MacDorman KF, Ishiguro H (2005) Generating natural motion in an android by mapping human motion. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS)

    Google Scholar 

  30. Mianowski K, Schmitz N, Berns K (2007) Mechatronics of the humanoid robot ROMAN. In: Robot motion and control 2007, pp 341–348

    Chapter  Google Scholar 

  31. Montemerlo M, Thrun S, Koller D, Wegbreit B (2003) FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: Proceedings of the international joint conference on artificial intelligence (IJCAI)

    Google Scholar 

  32. Mori M (1970) Bukimi no tani [the uncanny valley]. Energy 7(4):33–35

    Google Scholar 

  33. Nieuwenhuisen M, Gaspers J, Tischler O, Behnke S (2010) Intuitive multimodal interaction and predictable behavior for the museum tour guide robot Robotinho. In: Proceedings IEEE-RAS international conference on humanoid robots (Humanoids). IEEE, New York, pp 653–658

    Google Scholar 

  34. Nieuwenhuisen M, Stückler J, Behnke S (2010) Intuitive multimodal interaction for domestic service robots. In: Proceedings of joint international symposium on robotics (ISR 2010) and German conference on robotics (ROBOTIK 2010)

    Google Scholar 

  35. Nourbakhsh I, Kunz C, Willeke T (2003) The mobot museum robot installations: a five year experiment. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS)

    Google Scholar 

  36. Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A (2009) Ros: an open-source robot operating system. In: ICRA workshop on open source software, vol 3

    Google Scholar 

  37. Ruttkay Z, Noot H, ten Hagen P (2003) Emotion disc and emotion squares: tools to explore the facial expression space. Comput Graph Forum 22(1):49–53

    Article  Google Scholar 

  38. Saldien J, Goris K, Vanderborght B, Vanderfaeillie J, Lefeber D (2010) Expressing emotions with the social robot probo. Int J Soc Robot 2(4):377–389

    Article  Google Scholar 

  39. Salem M, Kopp S, Wachsmuth I, Rohlfing K, Joublin F (2012) Generation and evaluation of communicative robot gesture. Int J Soc Robot. doi:10.1007/s12369-011-0124-9

    Google Scholar 

  40. Schillaci G, Bodiroža S, Hafner V (2013) Evaluating the effect of saliency detection and attention manipulation in human-robot interaction. Int J Soc Robot 5(1):139–152

    Article  Google Scholar 

  41. Schulz D (2006) A probabilistic exemplar approach to combine laser and vision for person tracking. In: Proceedings of the robotics: science and systems conference (RSS)

    Google Scholar 

  42. Shin-Ichi O, Tomohito A, Tooru I (2001) The introduction of the personal robot papero. IPSJ SIG Notes (68):37–42

  43. Shiomi M, Kanda T, Ishiguro H, Hagita N (2010) A larger audience, please!: encouraging people to listen to a guide robot. In: Proceedings of the ACM/IEEE international conference on human-robot interaction (HRI)

    Google Scholar 

  44. Siegwart R, Arras K, Bouabdallah S, Burnier D, Froidevaux G, Greppin X, Jensen B, Lorotte A, Mayor L, Meisser M et al (2003) Robox at expo. 02: a large-scale installation of personal robots. Robot Auton Syst 42(3–4):203–222

    Article  MATH  Google Scholar 

  45. Spinello L, Triebel R, Siegwart R (2008) Multimodal detection and tracking of pedestrians in urban environments with explicit ground plane extraction. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS)

    Google Scholar 

  46. Stückler J, Behnke S (2009) Integrating indoor mobility, object manipulation and intuitive interaction for domestic service tasks. In: Proceedings IEEE-RAS international conference on humanoid robots (Humanoids)

    Google Scholar 

  47. Stückler J, Dröschel D, Gräve K, Holz D, Schreiber M, Behnke S (2010) NimbRo @Home 2010 team description. In: RoboCup 2010 @Home league team descriptions

    Google Scholar 

  48. Stückler J, Holz D, Behnke S (2012) RoboCup@Home: demonstrating everyday manipulation skills in RoboCup@Home. IEEE Robot Autom Mag 19(2):34–42

    Article  Google Scholar 

  49. Thrun S, Beetz M, Bennewitz M, Burgard W, Cremers A, Dellaert F, Fox D, Hahnel D, Rosenberg C, Roy N et al (2000) Probabilistic algorithms and the interactive museum tour-guide robot minerva. Int J Robot Res 19(11):972

    Article  Google Scholar 

  50. Ulrich I, Borenstein J (1998) VFH+: reliable obstacle avoidance for fast mobile robots. In: Proceedings of the IEEE international conference on robotics and automation (ICRA)

    Google Scholar 

  51. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  52. Welch G, Bishop G (1995) An introduction to the Kalman filter. University of North Carolina at Chapel Hill, Chapel Hill

    Google Scholar 

  53. Wilken T, Missura M, Behnke S (2009) Designing falling motions for a humanoid soccer goalie. In: Proceedings of the 4th workshop on humanoid soccer robots, international conference on humanoid robots (Humanoids)

    Google Scholar 

  54. Willow Garage: PR2 manual

  55. Wisspeintner T, Zan T, Iocchi L, Schiffer S (2010) Robocup@home: results in benchmarking domestic service robots. In: Baltes J, Lagoudakis M, Naruse T, Ghidary S (eds) RoboCup 2009: robot soccer world cup XIII. Lecture notes in computer science, vol 5949. Springer, Berlin Heidelberg, pp 390–401

    Chapter  Google Scholar 

  56. Yousuf M, Kobayashi Y, Kuno Y, Yamazaki A, Yamazaki K (2012) Development of a mobile museum guide robot that can configure spatial formation with visitors. In: Intelligent computing technology. Lecture notes in computer science, vol 7389. Springer, Berlin Heidelberg, pp 423–432

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Dr. Andrea Niehaus and her team at Deutsches Museum Bonn for providing the location and their support before and during our tests.

This work has been supported partially by grant BE 2556/2-3 of German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Nieuwenhuisen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieuwenhuisen, M., Behnke, S. Human-Like Interaction Skills for the Mobile Communication Robot Robotinho. Int J of Soc Robotics 5, 549–561 (2013). https://doi.org/10.1007/s12369-013-0206-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-013-0206-y

Keywords

Navigation