Abstract
Efficiency measurement has been receiving significant attention the last years especially after the recent economic crises and the need of efficient use of public money. Although single step efficiency measurement is usually applied, taking into account the internal structure of the system is expected to provide more meaningful and informative results. This could be done in two axes: decomposition of the process into sub-processes and hierarchical modeling among system components. In this framework we extend the Data Envelopment Analysis approach by examining efficiency through multi-level and multi-stage modeling. The proposed modeling approach (1) can give a better insight in sub-processes compared to single-stage ones and (2) can take into account functional/systemic characteristics (e.g., a Decision Making Unit operating as a part of a greater system). Through a ‘soft’ integration approach, not only different stages can be introduced but also hierarchies can be easily accommodated. Analysis of the efficiency of national/regional innovation systems is used as an illustrative example. The innovation process is modeled as a multi-stage process including knowledge production and knowledge commercialization and multi-level one, where regional innovation is achieved within a national innovation system.
Similar content being viewed by others
References
Afzal MNI (2014) An empirical investigation of the National Innovation System (NIS) using Data Envelopment Analysis (DEA) and the TOBIT model. Int Rev Appl Econ 28(4):507–523. doi:10.1080/02692171.2014.896880
Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage Sci 30(9):1078–1092
Cai Y (2011) Factors affecting the efficiency of the BRICSs’ national innovation systems: a comparative study based on DEA and panel data analysis. Economics: The Open-Access, Open Assessment E-Journal, 5(2011-52)
Carayannis E, Grigoroudis E (2014) Linking innovation, productivity, and competitiveness: implications for policy and practice. J Technol Transf 39(2):199–218. doi:10.1007/s10961-012-9295-2
Castelli L, Pesenti R, Ukovich W (2004) DEA-like models for the efficiency evaluation of hierarchically structured units. Eur J Oper Res 154(2):465–476
Charnes A, Cooper WW (1984) The non-archimedean CCR ratio for efficiency analysis: a rejoinder to Boyd and Färe. Eur J Oper Res 15(3):333–334. doi:10.1016/0377-2217(84)90102-4
Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2(6):429–444
Chilingerian J, Sherman HD (2011) Health-care applications: from hospitals to physicians, from productive efficiency to quality frontiers. In: Cooper WW, Seiford LM, Zhu J (eds) Handbook on data envelopment analysis, vol 164. Springer, New York, pp 445–493
Cook WD, Green RH (2005) Evaluating power plant efficiency: a hierarchical model. Comput Oper Res 32(4):813–823
Cook W, Chai D, Doyle J, Green R (1998) Hierarchies and Groups in DEA. J Prod Anal 10(2):177–198. doi:10.1023/a:1018625424184
Cooper WW, Seiford LM, Tone K (2007) Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software. Springer, New York
Despotis D, Koronakos G, & Sotiros D (2014) Composition versus decomposition in two-stage network DEA: a reverse approach. J Product Anal 1–17. doi:10.1007/s11123-014-0415-x
Dia M, Ben Abdelaziz F, Gadhoum Y (2013) A hierarchical and fuzzy competitiveness evaluation methodology based on DEA. Int J Multicriteria Decis Mak 3(1):21–35
Ebrahimnejad A, Tavana M, Lotfi FH, Shahverdi R, Yousefpour M (2014) A three-stage data envelopment analysis model with application to banking industry. Measurement 49:308–319. doi:10.1016/j.measurement.2013.11.043
EC (2014a) Innovation Union Scoreboard. European Commission
EC (2014b) Regional innovation scoreboard. European Commission
Färe R, Primont D (1984) Efficiency measures for multiplant firms. Oper Res Lett 3(5):257–260
Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc Ser A 120(3):253–290. doi:10.2307/2343100
Furman JL, Porter ME, Stern S (2002) The determinants of national innovative capacity. Res Policy 31(6):899–933. doi:10.1016/S0048-7333(01)00152-4
Guan J, Chen K (2012) Modeling the relative efficiency of national innovation systems. Res Policy 41(1):102–115. doi:10.1016/j.respol.2011.07.001
Guan JC, Yam RCM, Mok CK, Ma N (2006) A study of the relationship between competitiveness and technological innovation capability based on DEA models. Eur J Oper Res 170(3):971–986. doi:10.1016/j.ejor.2004.07.054
Kaihua C, Mingting K (2014) Staged efficiency and its determinants of regional innovation systems: a two-step analytical procedure. Ann Reg Sci 52(2):627–657. doi:10.1007/s00168-014-0604-6
Kao C (2014) Network data envelopment analysis: a review. Eur J Oper Res 239(1):1–16. doi:10.1016/j.ejor.2014.02.039
Kao C, Hwang S-N (2008) Efficiency decomposition in two-stage data envelopment analysis: an application to non-life insurance companies in Taiwan. Eur J Oper Res 185(1):418–429. doi:10.1016/j.ejor.2006.11.041
Kao C, Hwang SN (2011) Decomposition of technical and scale efficiencies in two-stage production systems. Eur J Oper Res 211(3):515–519
Li Y, Chen Y, Liang L, Xie J (2012) DEA models for extended two-stage network structures. Omega 40(5):611–618. doi:10.1016/j.omega.2011.11.007
Liu JS, Lu W-M, Ho MH-C (2014) National characteristics: innovation systems from the process efficiency perspective. R&D Manage n/a–n/a. doi:10.1111/radm.12067
Matthews K (2013) Risk management and managerial efficiency in Chinese banks: a network DEA framework. Omega (United Kingdom) 41(2):207–215
Meng W, Zhang D, Qi L, Liu W (2008) Two-level DEA approaches in research evaluation. Omega 36(6):950–957. doi:10.1016/j.omega.2007.12.005
Moon H-S, Lee J-D (2005) A fuzzy set theory approach to national composite S&T indices. Scientometrics 64(1):67–83. doi:10.1007/s11192-005-0238-7
Nasierowski W, Arcelus FJ (2003) On the efficiency of national innovation systems. Socio-Econ Plan Sci 37(3):215–234. doi:10.1016/S0038-0121(02)00046-0
Rho S, An J (2007) Evaluating the efficiency of a two-stage production process using data envelopment analysis. Int Trans Oper Res 14(5):395–410. doi:10.1111/j.1475-3995.2007.00597.x
Seiford LM, Zhu J (1999) Profitability and marketability of the top 55 U.S. commercial banks. Manage Sci 45(9):1270–1288
Sharma S, Thomas VJ (2008) Inter-country R&D efficiency analysis: an application of data envelopment analysis. Scientometrics 76(3):483–501. doi:10.1007/s11192-007-1896-4
Sleuwaegen L, Boiardi P (2014) Creativity and regional innovation: evidence from EU regions. Res Policy. doi:10.1016/j.respol.2014.03.014
Wang Y-M, Chin K-S (2010) Some alternative DEA models for two-stage process. Expert Syst Appl 37(12):8799–8808. doi:10.1016/j.eswa.2010.06.024
Wang EC, Huang W (2007) Relative efficiency of R&D activities: a cross-country study accounting for environmental factors in the DEA approach. Res Policy 36(2):260–273. doi:10.1016/j.respol.2006.11.004
Wang CH, Gopal RD, Zionts S (1997) Use of data envelopment analysis in assessing information technology impact on firm performance. Ann Oper Res 73:191–213
Wei Q, Yan H, Pang L (2011) Composite network data envelopment analysis model. Int J Inf Technol Decis Mak 10(4):613–633
Zabala-Iturriagagoitia JM, Voigt P, Gutierrez-Gracia A, Jimenez-Saez F (2007) Regional innovation systems: how to assess performance. Reg Stud 41(5):661–672. doi:10.1080/00343400601120270
Zhu J (2009) Quantitative models for performance evaluation and benchmarking data envelopment analysis with spreadsheets. Springer, New York
Author information
Authors and Affiliations
Corresponding author
Appendix: Regional efficiency scores
Appendix: Regional efficiency scores
DMU | Regions | \( \theta_{0}^{*} \) | θ 10 | θ 20 | DMU | Regions | \( \theta_{0}^{*} \) | θ 10 | θ 20 |
---|---|---|---|---|---|---|---|---|---|
1 | BE1 | 0.5603 | 0.5603 | 1.0000 | 52 | ES51 | 0.6856 | 0.7486 | 0.9158 |
2 | BE2 | 0.4685 | 0.5430 | 0.8628 | 53 | ES52 | 0.3329 | 0.5673 | 0.5868 |
3 | BE3 | 0.3586 | 0.3801 | 0.9434 | 54 | ES53 | 0.3902 | 0.8549 | 0.4565 |
4 | BG3 | 0.7658 | 0.7658 | 1.0000 | 55 | ES61 | 0.3171 | 0.6612 | 0.4797 |
5 | BG4 | 0.1992 | 0.5018 | 0.3970 | 56 | ES62 | 0.2449 | 0.5941 | 0.4122 |
6 | CZ01 | 0.6520 | 0.9317 | 0.6998 | 57 | ES63 | 1.0000 | 1.0000 | 1.0000 |
7 | CZ02 | 1.0000 | 1.0000 | 1.0000 | 58 | ES64 | 0.4966 | 1.0000 | 0.4966 |
8 | CZ03 | 0.8144 | 0.9711 | 0.8386 | 59 | ES7 | 0.3791 | 0.6920 | 0.5479 |
9 | CZ04 | 1.0000 | 1.0000 | 1.0000 | 60 | FR1 | 0.7359 | 0.7359 | 1.0000 |
10 | CZ05 | 0.9143 | 1.0000 | 0.9143 | 61 | FR2 | 0.6125 | 0.6125 | 1.0000 |
11 | CZ06 | 0.6476 | 0.7644 | 0.8472 | 62 | FR3 | 0.5501 | 0.5584 | 0.9852 |
12 | CZ07 | 0.6542 | 0.6555 | 0.9979 | 63 | FR4 | 0.4451 | 0.6448 | 0.6903 |
13 | CZ08 | 0.6129 | 0.8634 | 0.7098 | 64 | FR5 | 0.3872 | 0.5122 | 0.7559 |
14 | DK01 | 0.4257 | 0.4257 | 1.0000 | 65 | FR6 | 0.3620 | 0.5258 | 0.6885 |
15 | DK02 | 0.3226 | 0.4304 | 0.7496 | 66 | FR7 | 0.4479 | 0.5215 | 0.8589 |
16 | DK03 | 0.2986 | 0.4084 | 0.7312 | 67 | FR8 | 0.4982 | 0.6560 | 0.7594 |
17 | DK04 | 0.3183 | 0.3802 | 0.8372 | 68 | FR9 | 0.5389 | 1.0000 | 0.5389 |
18 | DK05 | 0.3071 | 0.4378 | 0.7016 | 69 | ITC1 | 0.9258 | 1.0000 | 0.9258 |
19 | DE1 | 1.0000 | 1.0000 | 1.0000 | 70 | ITC2 | 0.8098 | 0.8098 | 1.0000 |
20 | DE2 | 0.8925 | 0.8925 | 1.0000 | 71 | ITC3 | 0.5081 | 0.7890 | 0.6440 |
21 | DE3 | 0.8601 | 1.0000 | 0.8601 | 72 | ITC4 | 1.0000 | 1.0000 | 1.0000 |
22 | DE4 | 0.4540 | 0.5865 | 0.7740 | 73 | ITD1 | 0.7238 | 0.7238 | 1.0000 |
23 | DE5 | 0.7460 | 0.9562 | 0.7802 | 74 | ITD4 | 0.7303 | 0.9014 | 0.8102 |
24 | DE6 | 0.9239 | 1.0000 | 0.9239 | 75 | ITD5 | 0.7688 | 0.9527 | 0.8070 |
25 | DE7 | 0.8916 | 0.9377 | 0.9508 | 76 | ITE1 | 0.4643 | 0.6555 | 0.7083 |
26 | DE8 | 0.5229 | 0.6782 | 0.7709 | 77 | ITE2 | 0.5773 | 1.0000 | 0.5773 |
27 | DE9 | 0.7491 | 0.9095 | 0.8236 | 78 | ITE3 | 0.5730 | 0.8961 | 0.6394 |
28 | DEA | 0.7252 | 0.8265 | 0.8774 | 79 | ITE4 | 0.6276 | 0.9513 | 0.6597 |
29 | DEB | 0.8066 | 0.8263 | 0.9761 | 80 | ITF1 | 0.4379 | 0.7405 | 0.5913 |
30 | DEC | 0.9910 | 0.9960 | 0.9950 | 81 | ITF2 | 0.5080 | 1.0000 | 0.5080 |
31 | DED | 0.4986 | 0.8047 | 0.6196 | 82 | ITF3 | 0.5563 | 0.9045 | 0.6151 |
32 | DEE | 0.4764 | 0.6923 | 0.6882 | 83 | ITF4 | 0.5774 | 0.7363 | 0.7842 |
33 | DEF | 0.7346 | 0.8413 | 0.8731 | 84 | ITF5 | 0.5660 | 0.7438 | 0.7609 |
34 | DEG | 0.5778 | 0.7942 | 0.7275 | 85 | ITF6 | 0.4951 | 0.7707 | 0.6423 |
35 | IE01 | 0.4064 | 0.4947 | 0.8216 | 86 | ITG1 | 0.4034 | 0.7062 | 0.5713 |
36 | IE02 | 0.4641 | 0.7053 | 0.6580 | 87 | ITG2 | 0.5550 | 0.5990 | 0.9265 |
37 | GR1 | 0.4010 | 0.7155 | 0.5605 | 88 | HU1 | 0.3735 | 0.7917 | 0.4718 |
38 | GR2 | 0.3883 | 0.6178 | 0.6286 | 89 | HU21 | 0.6183 | 1.0000 | 0.6183 |
39 | GR3 | 0.5810 | 1.0000 | 0.5810 | 90 | HU22 | 0.4701 | 0.8604 | 0.5464 |
40 | GR4 | 0.3985 | 0.8086 | 0.4928 | 91 | HU23 | 0.2503 | 0.5591 | 0.4476 |
41 | ES11 | 0.3075 | 0.6724 | 0.4573 | 92 | HU31 | 0.3174 | 0.7412 | 0.4282 |
42 | ES12 | 0.5474 | 1.0000 | 0.5474 | 93 | HU32 | 0.2147 | 0.5853 | 0.3668 |
43 | ES13 | 0.3537 | 0.5209 | 0.6791 | 94 | HU33 | 0.2171 | 0.4734 | 0.4585 |
44 | ES21 | 0.6830 | 1.0000 | 0.6830 | 95 | NL11 | 0.2862 | 0.3550 | 0.8063 |
45 | ES22 | 0.6128 | 0.7296 | 0.8399 | 96 | NL12 | 0.3105 | 0.3248 | 0.9559 |
46 | ES23 | 0.4628 | 0.8032 | 0.5763 | 97 | NL13 | 0.3122 | 0.3175 | 0.9831 |
47 | ES24 | 0.6049 | 0.8330 | 0.7261 | 98 | NL21 | 0.2762 | 0.3034 | 0.9102 |
48 | ES3 | 0.7960 | 1.0000 | 0.7960 | 99 | NL22 | 0.3018 | 0.3226 | 0.9353 |
49 | ES41 | 0.4349 | 0.8849 | 0.4915 | 100 | NL23 | 0.4096 | 0.4470 | 0.9162 |
50 | ES42 | 0.3413 | 0.6546 | 0.5213 | 101 | NL31 | 0.4325 | 0.4827 | 0.8960 |
51 | ES43 | 0.3373 | 1.0000 | 0.3373 | 102 | NL32 | 0.4587 | 0.5096 | 0.9001 |
103 | NL33 | 0.4693 | 0.5193 | 0.9037 | 145 | SK03 | 0.4166 | 0.6949 | 0.5995 |
104 | NL34 | 0.4731 | 0.4731 | 1.0000 | 146 | SK04 | 0.4179 | 0.8124 | 0.5143 |
105 | NL41 | 0.4708 | 0.4708 | 1.0000 | 147 | FI13 | 0.3204 | 0.3913 | 0.8188 |
106 | NL42 | 0.4149 | 0.4149 | 1.0000 | 148 | FI18 | 0.5002 | 0.6091 | 0.8212 |
107 | AT1 | 0.5110 | 0.5195 | 0.9836 | 149 | FI19 | 0.5054 | 0.5520 | 0.9156 |
108 | AT2 | 0.4584 | 0.4584 | 1.0000 | 150 | FI1A | 0.3301 | 0.3959 | 0.8337 |
109 | AT3 | 0.4853 | 0.4853 | 1.0000 | 151 | FI2 | 1.0000 | 1.0000 | 1.0000 |
110 | PL11 | 0.1941 | 0.5064 | 0.3833 | 152 | SE11 | 0.7861 | 0.9245 | 0.8503 |
111 | PL12 | 0.2658 | 0.6983 | 0.3806 | 153 | SE12 | 0.5032 | 0.5106 | 0.9857 |
112 | PL21 | 0.2137 | 0.4415 | 0.4841 | 154 | SE21 | 0.4501 | 0.5091 | 0.8841 |
113 | PL22 | 0.2702 | 0.6322 | 0.4274 | 155 | SE22 | 0.4241 | 0.4772 | 0.8886 |
114 | PL31 | 0.2059 | 0.4579 | 0.4495 | 156 | SE23 | 0.4793 | 0.5081 | 0.9434 |
115 | PL32 | 0.2609 | 0.4406 | 0.5922 | 157 | SE31 | 0.3063 | 0.3713 | 0.8248 |
116 | PL33 | 0.6994 | 0.6994 | 1.0000 | 158 | SE32 | 0.3731 | 0.4324 | 0.8629 |
117 | PL34 | 0.2301 | 0.5771 | 0.3988 | 159 | SE33 | 0.2627 | 0.3422 | 0.7678 |
118 | PL41 | 0.2143 | 0.5324 | 0.4025 | 160 | UKC | 0.4096 | 0.4982 | 0.8223 |
119 | PL42 | 0.3804 | 0.7589 | 0.5013 | 161 | UKD | 0.3649 | 0.5149 | 0.7088 |
120 | PL43 | 0.2974 | 0.5875 | 0.5062 | 162 | UKE | 0.3701 | 0.4997 | 0.7407 |
121 | PL51 | 0.2762 | 0.5894 | 0.4686 | 163 | UKF | 0.3871 | 0.4795 | 0.8073 |
122 | PL52 | 0.4698 | 0.7901 | 0.5945 | 164 | UKG | 0.4433 | 0.5375 | 0.8249 |
123 | PL61 | 0.2748 | 0.6352 | 0.4326 | 165 | UKH | 0.4525 | 0.5771 | 0.7841 |
124 | PL62 | 0.2857 | 0.6759 | 0.4227 | 166 | UKI | 0.4315 | 0.7324 | 0.5891 |
125 | PL63 | 0.2860 | 0.6495 | 0.4404 | 167 | UKJ | 0.6420 | 0.9137 | 0.7026 |
126 | PT11 | 0.6292 | 0.7948 | 0.7916 | 168 | UKK | 0.3435 | 0.4496 | 0.7639 |
127 | PT15 | 1.0000 | 1.0000 | 1.0000 | 169 | UKL | 0.3840 | 0.4960 | 0.7742 |
128 | PT16 | 0.9027 | 0.9027 | 1.0000 | 170 | UKM | 0.3281 | 0.5092 | 0.6444 |
129 | PT17 | 0.8477 | 1.0000 | 0.8477 | 171 | UKN | 0.2532 | 0.4671 | 0.5420 |
130 | PT18 | 0.8050 | 0.8117 | 0.9917 | 172 | CH01 | 0.4329 | 0.5345 | 0.8100 |
131 | PT2 | 0.9069 | 1.0000 | 0.9069 | 173 | CH02 | 0.4680 | 0.6494 | 0.7206 |
132 | PT3 | 1.0000 | 1.0000 | 1.0000 | 174 | CH03 | 0.6803 | 0.7293 | 0.9328 |
133 | RO11 | 0.2990 | 0.8702 | 0.3436 | 175 | CH04 | 0.9389 | 1.0000 | 0.9389 |
134 | RO12 | 0.6278 | 1.0000 | 0.6278 | 176 | CH05 | 0.4249 | 0.6059 | 0.7013 |
135 | RO21 | 0.6481 | 1.0000 | 0.6481 | 177 | CH06 | 0.4859 | 0.6610 | 0.7352 |
136 | RO22 | 1.0000 | 1.0000 | 1.0000 | 178 | CH07 | 0.4536 | 0.6083 | 0.7458 |
137 | RO31 | 0.3562 | 1.0000 | 0.3562 | 179 | NO01 | 0.8055 | 0.8055 | 1.0000 |
138 | RO32 | 0.3505 | 1.0000 | 0.3505 | 180 | NO02 | 0.3493 | 0.7590 | 0.4603 |
139 | RO41 | 0.2872 | 1.0000 | 0.2872 | 181 | NO03 | 0.4036 | 0.6412 | 0.6295 |
140 | RO42 | 0.6236 | 1.0000 | 0.6236 | 182 | NO04 | 0.7808 | 0.7808 | 1.0000 |
141 | SI01 | 0.4260 | 0.5006 | 0.8511 | 183 | NO05 | 0.4461 | 0.6257 | 0.7129 |
142 | SI02 | 0.4439 | 0.5771 | 0.7692 | 184 | NO06 | 0.3426 | 0.4990 | 0.6867 |
143 | SK01 | 0.6351 | 0.9975 | 0.6367 | 185 | NO07 | 0.2910 | 0.5963 | 0.4881 |
144 | SK02 | 0.4567 | 0.7792 | 0.5861 |
Rights and permissions
About this article
Cite this article
Carayannis, E.G., Goletsis, Y. & Grigoroudis, E. Multi-level multi-stage efficiency measurement: the case of innovation systems. Oper Res Int J 15, 253–274 (2015). https://doi.org/10.1007/s12351-015-0176-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12351-015-0176-y