[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Balancing performance between the decision space and the objective space in multimodal multiobjective optimization

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Many multimodal multiobjective optimization algorithms aim to find as many Pareto optimal solutions as possible while the performance in the objective space is despised. More seriously, some algorithms even overemphasize the diversity of solution set in the decision space at the cost of convergence. How to improve convergence and diversity simultaneously is an important issue when solving multimodal multiobjective optimization problems. In this paper, we propose an evolutionary multiobjective optimization algorithm with a decomposition strategy in the decision space (EMO-DD). A decision subregion allocation and diversity archive preservation methods are proposed to promote the diversity of solutions in the decision space. Meanwhile, a bi-objective optimization problem is formulated for screening for solutions with great convergence and diversity. Combining a modified mating selection method, well-performed solutions both on the convergence and diversity are preserved and inherited. The performance of EMO-DD is compared with five state-of-the-art algorithms on fifteen test problems. The experimental results show that EMO-DD can solve multimodal multiobjective optimization problems, and can improve the performance of the solution set in both the decision and objective spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary multiobjective optimization. Springer, London, pp 105–145

  2. Mao-Guo G, Li-Cheng J, Dong-Dong Y, Wen-Ping M (2009) Evolutionary multi-objective optimization algorithms

  3. Wang Z, Ong Y-S, Sun J, Gupta A, Zhang Q (2018) A generator for multiobjective test problems with difficult-to-approximate pareto front boundaries. IEEE Trans Evolut Comput 23(4):556–571

    Article  Google Scholar 

  4. Wang Z, Ong Y-S, Ishibuchi H (2018) On scalable multiobjective test problems with hardly dominated boundaries. IEEE Trans Evolut Comput 23(2):217–231

    Article  Google Scholar 

  5. Da B, Ong Y-S, Feng L, Qin AK, Gupta A, Zhu Z, Ting C-K, Tang K, Yao X (2007) Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results. arXiv preprint arXiv:1706.03470

  6. Yue C, Qu B, Yu K, Liang J, Li X (2019) A novel scalable test problem suite for multimodal multiobjective optimization. Swarm Evolut Comput 48:62–71

    Article  Google Scholar 

  7. Li X, Epitropakis MG, Deb K, Engelbrecht A (2016) Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE Trans Evolut Comput 21(4):518–538

    Article  Google Scholar 

  8. Ishibuchi H, Peng Y, Shang K (2019) A scalable multimodal multiobjective test problem. In: International conference on evolutionary computation. IEEE, pp 310–317

  9. Kudo F, Yoshikawa T, Furuhashi T (2011) A study on analysis of design variables in pareto solutions for conceptual design optimization problem of hybrid rocket engine. In: International conference on evolutionary computation. IEEE, pp 2558–2562

  10. Hiroyasu T, Nakayama S, Miki M (2005) Comparison study of SPEA2\(+\), SPEA2, and NSGA-II in diesel engine emissions and fuel economy problem. In: International conference on evolutionary computation, vol 1. IEEE, pp 236–242

  11. Sebag M, Tarrisson N, Teytaud O, Lefevre J, Baillet S (2005) A multi-objective multi-modal optimization approach for mining stable spatio-temporal patterns. In: IJCAI, pp 859–864

  12. Togelius J, Preuss M, Yannakakis GN (2010) Towards multiobjective procedural map generation. In: International workshop on procedural content generation in games, pp 1–8

  13. Preuss M, Kausch C, Bouvy C, Henrich F (2010) Decision space diversity can be essential for solving multiobjective real-world problems. In: Multiple criteria decision making for sustainable energy and transportation systems. Springer, pp 367–377

  14. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182–197

    Article  Google Scholar 

  15. Li H, Wang L, Hei X, Li W, Jiang Q (2018) A decomposition-based chemical reaction optimization for multi-objective vehicle routing problem for simultaneous delivery and pickup with time windows. Memet Comput 10(1):103–120

    Article  Google Scholar 

  16. Hammami M, Bechikh S, Hung C-C, Said LB (2019) A multi-objective hybrid filter-wrapper evolutionary approach for feature selection. Memet Comput 11(2):193–208

    Article  Google Scholar 

  17. Zou J, Yang Q, Yang S, Zheng J (2020) Ra-dominance: a new dominance relationship for preference-based evolutionary multiobjective optimization. Appl Soft Comput 106192

  18. Bui LT, Liu J, Bender A, Barlow M, Wesolkowski S, Abbass HA (2011) DMEA: a direction-based multiobjective evolutionary algorithm. Memet Comput 3(4):271–285

    Article  Google Scholar 

  19. Wang S, Liu J, Jin Y (2020) Robust structural balance in signed networks using a multiobjective evolutionary algorithm. IEEE Comput Intell Mag 15(2):24–35

    Article  MathSciNet  Google Scholar 

  20. Preuss M, Naujoks B, Rudolph G (2006) Pareto set and EMOA behavior for simple multimodal multiobjective functions. In: International conference on parallel problem solving from nature. Springer, pp 513–522

  21. Deb K, Tiwari S (2005) Omni-optimizer: a procedure for single and multi-objective optimization. In: International conference on evolutionary multi-criterion optimization. Springer, pp 47–61

  22. Liang J, Yue C, Qu B-Y (2016) Multimodal multi-objective optimization: a preliminary study. In: International conference on evolutionary computation. IEEE, pp 2454–2461

  23. Tanabe R, Ishibuchi H (2019) A review of evolutionary multimodal multiobjective optimization. IEEE Trans Evolut Comput 24(1):193–200

    Article  Google Scholar 

  24. Yue C, Qu B, Liang J (2017) A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans Evolut Comput 22(5):805–817

    Article  Google Scholar 

  25. Liang JJ, Qu B-Y, Mao X, Niu B, Wang D (2014) Differential evolution based on fitness Euclidean-distance ratio for multimodal optimization. Neurocomputing 137:252–260

    Article  Google Scholar 

  26. Qu B-Y, Suganthan PN, Liang J-J (2012) Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans Evolut Comput 16(5):601–614

    Article  Google Scholar 

  27. Liang JJ, Ma ST, Qu B-Y, Niu B (2012) Strategy adaptative memetic crowding differential evolution for multimodal optimization. In: International conference on evolutionary computation. IEEE, pp 1–7

  28. Hao L, Gong M, Sun Y, Pan J (2006) Niching clonal selection algorithm for multimodal function optimization. In: International conference on natural computation. Springer, pp 820–827

  29. Goldberg DE, Richardson J et al (1987) Genetic algorithms with sharing for multimodal function optimization. In: Genetic algorithms and their applications: proceedings of the 2nd international conference on genetic algorithms. Lawrence Erlbaum, Hillsdale, pp 41–49

  30. Qing L, Gang W, Zaiyue Y, Qiuping W (2008) Crowding clustering genetic algorithm for multimodal function optimization. Appl Soft Comput 8(1):88–95

    Article  Google Scholar 

  31. Lin Q, Lin W, Zhu Z, Gong M, Li J, Coello CAC (2020) Multimodal multi-objective evolutionary optimization with dual clustering in decision and objective spaces. IEEE Trans Evolut Comput

  32. Liu Y, Yen GG, Gong D (2018) A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies. IEEE Trans Evolut Comput 23(4):660–674

    Article  Google Scholar 

  33. Xia H, Zhuang J, Yu D (2013) Combining crowding estimation in objective and decision space with multiple selection and search strategies for multi-objective evolutionary optimization. IEEE Trans Cybern 44(3):378–393

    Article  Google Scholar 

  34. Liu Y, Ishibuchi H, Nojima Y, Masuyama N, Shang K (2018) A double-niched evolutionary algorithm and its behavior on polygon-based problems. In: International conference on parallel problem solving from nature. Springer, pp 262–273

  35. Wang Z-J, Zhan Z-H, Lin Y, Yu W-J, Wang H, Kwong S, Zhang J (2019) Automatic niching differential evolution with contour prediction approach for multimodal optimization problems. IEEE Trans Evolut Comput 24(1):114–128

    Article  Google Scholar 

  36. Kim M, Hiroyasu T, Miki M, Watanabe S (2004) SPEA2+: improving the performance of the strength pareto evolutionary algorithm 2. In: International conference on parallel problem solving from nature. Springer, pp 742–751

  37. Liang J, Xu W, Yue C, Yu K, Song H, Crisalle OD, Qu B (2019) Multimodal multiobjective optimization with differential evolution. Swarm and Evolut Comput 44:1028–1059

    Article  Google Scholar 

  38. Tanabe R, Ishibuchi H (2018) A decomposition-based evolutionary algorithm for multi-modal multi-objective optimization. In: International conference on parallel problem solving from nature. Springer, pp 249–261

  39. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: International conference on neural networks, vol 4. IEEE, pp 1942–1948

  40. Nguyen HB, Xue B, Andreae P (2018) Pso with surrogate models for feature selection: static and dynamic clustering-based methods. Memet Comput 10(3):291–300

    Article  Google Scholar 

  41. Reyes-Sierra M, Coello CC et al (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  42. Kumar S, Kumar P, Sharma TK, Pant M (2013) Bi-level thresholding using PSO, artificial bee colony and MRLDE embedded with otsu method. Memet Comput 5(4):323–334

    Article  Google Scholar 

  43. Qu B, Li C, Liang J, Yan L, Yu K, Zhu Y (2020) A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems. Appl Soft Comput 86:105886

    Article  Google Scholar 

  44. Liang J, Guo Q, Yue C, Qu B, Yu K (2018) A self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems. In: International conference on swarm intelligence. Springer, pp 550–560

  45. Jin Y, Okabe T, Sendho B (2001) Adapting weighted aggregation for multiobjective evolution strategies. In: International conference on evolutionary multi-criterion optimization. Springer, pp 96–110

  46. Jaszkiewicz A (2002) On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment. IEEE Trans Evolut Comput 6(4):402–412

    Article  Google Scholar 

  47. Paquete L, Stützle T (2003) A two-phase local search for the biobjective traveling salesman problem. In: International conference on evolutionary multi-criterion optimization. Springer, pp 479–493

  48. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 11(6):712–731

    Article  Google Scholar 

  49. Deb K, Jain H (2013) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans Evolut Comput 18(4):577–601

    Article  Google Scholar 

  50. Miettinen K (2012) Nonlinear multiobjective optimization, vol 12. Springer, Berlin

    MATH  Google Scholar 

  51. Li K, Deb K, Zhang Q, Kwong S (2014) An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evolut Comput 19(5):694–716

    Article  Google Scholar 

  52. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm. TIK-report, vol 103

  53. Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans Evolut Comput 17(5):721–736

    Article  Google Scholar 

  54. Li K, Chen R, Fu G, Yao X (2018) Two-archive evolutionary algorithm for constrained multiobjective optimization. IEEE Trans Evolut Comput 23(2):303–315

    Article  Google Scholar 

  55. Liu Y, Ishibuchi H, Yen GG, Nojima Y, Masuyama N (2019) Handling imbalance between convergence and diversity in the decision space in evolutionary multi-modal multi-objective optimization. IEEE Trans Evolut Comput

  56. Rudolph G, Naujoks B, Preuss M (2007) Capabilities of EMOA to detect and preserve equivalent pareto subsets. In: International conference on evolutionary multi-criterion optimization. Springer, pp 36–50

  57. Li M, Yang S, Liu X (2015) Pareto or non-pareto: bi-criterion evolution in multiobjective optimization. IEEE Trans Evolut Comput 20(5):645–665

    Article  Google Scholar 

  58. Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evolut Comput 7(2):117–132

    Article  Google Scholar 

  59. Zhang W, Li G, Zhang W, Liang J, Yen GG (2019) A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization. Swarm and Evolut Comput 50:100569

    Article  Google Scholar 

  60. Zhou A, Zhang Q, Jin Y (2009) Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans Evolut Comput 13(5):1167–1189

    Article  Google Scholar 

  61. Deb K, Agrawal RB et al (1995) Simulated binary crossover for continuous search space. Complex Syst 9(2):115–148

    MathSciNet  MATH  Google Scholar 

  62. Deb K, Goyal M (1996) A combined genetic adaptive search (GeneAS) for engineering design. Comput Sci Inf 26:30–45

    Google Scholar 

  63. Tian Y, Cheng R, Zhang X, Jin Y (2017) PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. IEEE Comput Intell Mag 12(4):73–87

    Article  Google Scholar 

  64. Wimmer G, Šidlík P, Altmann G (1999) A new model of rank-frequency distribution. J Quant Linguist 6(2):188–193

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenkun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Wang, Z., Luo, J. et al. Balancing performance between the decision space and the objective space in multimodal multiobjective optimization. Memetic Comp. 13, 31–47 (2021). https://doi.org/10.1007/s12293-021-00325-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-021-00325-w

Keywords

Navigation