Abstract
Receptor-like kinases (RLKs) are a key class of genes that contribute to diverse phenomena from plant development to defense responses. The availability of completed potato genome sequences provide an excellent opportunity to identify and characterize RLK gene superfamily in this lineage. We identified 747 non-redundant RLK genes in the potato genome that were classified into 52 subfamilies, of which 58% members organized into tandem repeats. Nine of potato RLK subfamilies organized into tandem repeats. Also, six subfamilies exhibited lineage-specific expansion compared to Arabidopsis. The majority of RLK genes were physically organized within heterogeneous and homogeneous clusters on chromosomes and were unevenly distributed on the genome. Chromosome 2, 3 and 7 contained the highest number of RLK genes and the most underrepresented chromosomes were chromosome 8, 10 and 11. Taken together, our results provide a framework for future efforts on comparative, evolutionary and functional studies of the members of RLK superfamily.
Similar content being viewed by others
References
Bailey TL, Bodén M, Whitington T, Machanick P (2010) The value of position specific priors in motif discovery using MEME. BMC Bioinform 11:179. doi:10.1186/1471-2105-11-179
Becraft PW (2002) Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol 18:163–192. doi:10.1146/annurev.cellbio.18.012502.083431
Becraft PW, Stinard PS, McCarty DR (1996) CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273(80):1406
Clark SE (1997) Organ formation at the vegetative shoot meristem. Plant Cell 9:1067–1076. doi:10.1105/tpc.9.7.1067
Cui Y, Bi YM, Brugiere N et al (2000) The S locus glycoprotein and the S receptor kinase are sufficient for self-pollen rejection in Brassica. Proc Natl Acad Sci USA 97:3713–3717. doi:10.1073/pnas.050480297
Dardick C, Chen J, Richter T et al (2007) The rice kinase database. A phylogenomic database for the rice kinome. Plant Physiol 143:579–586. doi:10.1104/pp.106.087270
Dufayard J-F, Bettembourg M, Fischer I et al (2017) New insights on leucine-rich repeats receptor-like kinase orthologous relationships in angiosperms. Front Plant Sci 8:18. doi:10.3389/fpls.2017.00381
Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11:45–52
Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37. doi:10.1093/nar/gkr367
Friedman AR, Baker BJ (2007) The evolution of resistance genes in multiprotein plant resistance systems. Curr Opin Genet Dev 17:493–499. doi:10.1016/j.gde.2007.08.014
Galindo-Trigo S, Gray JE, Smith LM (2016) Conserved roles of CrRLK1L receptor-like kinases in cell expansion and reproduction from algae to angiosperms. Front Plant Sci 7:1–10. doi:10.3389/fpls.2016.01269
Gao L-L, Xue H (2012) Global analysis of expression profiles of rice receptor-like kinase genes. Mol Plant 5:143–153. doi:10.1093/mp/ssr062
Gifford ML, Robertson FC, Soares DC, Ingram GC (2005) Arabidopsis CRINKLY4 function, internalization, and turnover are dependent on the extracellular crinkly repeat domain. Plant Cell 17:1154–1166. doi:10.1105/tpc.104.029975
Gimenez-Ibanez S, Ntoukakis V, Rathjen JP (2009) The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. Plant Signal Behav 4:539–541. doi:10.1016/j.cub.2009.01.054
Hanada K, Zou C, Lehti-Shiu MD et al (2008) Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol 148:993–1003. doi:10.1104/pp.108.122457
Hardie DG (1999) Plant protein serine/threonine kinases: classification and functions. Annu Rev Plant Physiol Plant Mol Biol 50:97–131
He Z-H, He D, Kohorn BD (1998) Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response. Plant J 14:55–63
Jurca ME, Bottka S, Fehér A (2008) Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI). Plant Cell Rep 27:739–748. doi:10.1007/s00299-007-0494-5
Kim TW, Guan S, Burlingame AL, Wang ZY (2011) The CDG1 kinase mediates Brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol Cell 43:561–571. doi:10.1016/j.molcel.2011.05.037
Kozik A, Kochetkova E, Michelmore R (2002) GenomePixelizer—a visualization program for comparative genomics within and between species. Bioinformatics 18:335–336
Krupa A, Anamika N (2006) Genome-wide comparative analysis of domain organization of repertoires of protein kinase of Arabidopsis thaliana and Oryza sativa. Gene 380:1–13. doi:10.1016/j.gene.2006.05.016
Lehti-Shiu MD, Zou C, Hanada K, Shiu S-H (2009) Evolutionary history and stress regulation of plant. Plant Physiol 150:12–26. doi:10.1104/pp.108.134353
Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in Brassinosteroid signal transduction. Cell 90:929–938
Lim CW, Yang SH, Shin KH et al (2015) The AtLRK10L1.2, Arabidopsis ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. Plant Cell Rep 34:447–455. doi:10.1007/s00299-014-1724-2
Limpens E, Franken C, Smit P et al (2003) LysM domain receptor kinases regulating rhizobial nod factor-induced infection. Science 302(80):630–633. doi:10.1126/science.1090074
Liu P, Wei W, Ouyang S et al (2009) Analysis of expressed receptor-like kinases (RLks) in soybean. J Gent Genomics 36:611–619. doi:10.1016/S1673-8527(08)60153-8
Liu P-L, Xie L-L, Li P-W et al (2016) Duplication and divergence of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in basal angiosperm amborella trichopoda. Front Plant Sci 7:1–15. doi:10.3389/fpls.2016.01952
Liu P-L, Du L, Huang Y et al (2017) Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol 17:16. doi:10.1186/s12862-017-0891-5
Madsen E, Madsen L, Radutoiu S et al (2003) A receptor kinase gene of the LysM type involved in legume perception of rhizobial signals. Nature 425:637–640. doi:10.1038/nature02045
Magalhães DM, Scholte LLS, Silva NV et al (2016) LRR-RLK family from two Citrus species: genome-wide identification and evolutionary aspects. BMC Genom 17:13. doi:10.1186/s12864-016-2930-9
Matsubayashi Y (2003) Ligand-receptor pairs in plant peptide signaling. J Cell Sci 116:3863–3870. doi:10.1242/jcs.00733
Morris ER, Walker JC (2003) Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol 6:339–342
Nguyen Q-N, Lee Y-S, Cho L-H et al (2015) Genome-wide identification and analysis of Catharanthus roseus RLK1-like kinases in rice. Planta 241:603–613. doi:10.1007/s00425-014-2203-2
Niu E, Cai C, Zheng Y et al (2016) Genome-wide analysis of CrRLK1L gene family in Gossypium and identification of candidate CrRLK1L genes related to fiber development. Mol Genet Genomics 291:1137–1154. doi:10.1007/s00438-016-1169-0
Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319(80):294. doi:10.1126/science.1150083
Park S, Moon J-C, Park YC et al (2014) Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses. J Plant Physiol 171:1645–1653. doi:10.1016/j.jplph.2014.08.002
Radutoiu S, Madsen Y, Madsen LH et al (2003) Plant recognition of symbiotic requires two LysM receptor-like kinases. Nature 425:585–592
Sakamoto T, Deguchi M, Brustolini OJB et al (2012) The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol 12:229. doi:10.1186/1471-2229-12-229
Sasaki G, Katoh K, Hirose N et al (2007) Multiple receptor-like kinase cDNAs from liverwort Marchantia polymorpha and two charophycean green algae, Closterium ehrenbergii and Nitella axillaris: extensive gene duplications and gene shufflings in the early evolution of streptophytes. Gene 401:135–144. doi:10.1016/j.gene.2007.07.009
Shiu S-H, Bleecker AB (2001a) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 2001:13
Shiu S-H, Bleecker AB (2001b) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768. doi:10.1073/pnas.181141598
Shiu S-H, Bleecker AB (2003) Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543. doi:10.1104/pp.103.021964
Shiu S-H, Karlowski WM, Pan R et al (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234. doi:10.1105/tpc.020834
Shpak ED, Lakeman KU, Torii MB (2003) Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape. Plant Cell 15:1095–1110
Silva NF, Goring DR (2002) The proline-rich, extensin like receptor kinase-1 (PERK1) gene is rapidly induced by wounding. Plant Mol Biol 50:667–685
Singh P, Zimmerli L (2013) Lectin receptor kinases in plant innate immunity. Front Plant Sci 4:4. doi:10.3389/fpls.2013.00124
Song WY, Wang GL, Chen LL et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270(80):1804–1806
Stolzer M, Lai H, Xu M et al (2012) Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28:i409–i415. doi:10.1093/bioinformatics/bts386
Swiderski MR, Innes RW (2001) The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26:101–112
Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197
ten Hove CA, Bochdanovits Z, Jansweijer VMA et al (2011) Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set. Plant Mol Biol 76:69–83. doi:10.1007/s11103-011-9769-x
Vaid N, Pandey PK, Tuteja N (2012) Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. Plant Mol Biol 80:365–388. doi:10.1007/s11103-012-9952-8
Wang Y, Xiong G, Hu J et al (2015) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944–948. doi:10.1038/ng.3346
Wu Y, Xun Q, Guo Y et al (2016) Genome-wide expression pattern analyses of the Arabidopsis leucine-rich repeat receptor-like kinases. Mol Plant 9:289–300. doi:10.1016/j.molp.2015.12.011
Xu X, Pan S, Cheng S et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195. doi:10.1038/nature10158
Yang Y, Labbé J, Muchero W et al (2016) Genome-wide analysis of lectin receptor-like kinases in Populus. BMC Genom 17:16. doi:10.1186/s12864-016-3026-2
Zan Y, Ji Y, Zhang Y et al (2013) Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes. BMC Genom 14:318. doi:10.1186/1471-2164-14-318
Zhang H (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298. doi:10.1016/S0169-5347(03)00033-8
Acknowledgement
Funding was provided by University of Mohaghegh Ardabili (Grant No. 554).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Dezhsetan, S. Genome scanning for identification and mapping of receptor-like kinase (RLK) gene superfamily in Solanum tuberosum . Physiol Mol Biol Plants 23, 755–765 (2017). https://doi.org/10.1007/s12298-017-0471-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12298-017-0471-6