Abstract
A lot of anti-diabetic agents using natural plants have been extensively studied. Ginsenosides are known to be used as a remedy for diabetes in Asian countries and American Societies. Diabetic nephropathy is a major complication of diabetes mellitus. Extracellular matrix in mesangial cells is mainly composed of fibronectin and the increase of fibronectin is a hallmark of diabetic nephropathy. Protopenaxadiol (PPD) is a major component of total ginseng. Thus, we examined the regulatory mechanism of PPD derivatives-induced preventive effect of fibronectin expression in mesangial cells cultivated under diabetic condition. In present study, ginsenoside Rb1 prevented the high glucose-induced increase of fibronectin expression in mesangial cells. Ginsenoside Rb2 and Rg3 also mildly inhibited it. However, ginsenoside Rc and Rd did not prevent the high glucose-induced increase of fibronectin expression in mesangial cells. In addition, ginsenoside Rb1 prevented high glucose-induced phosphorylation of p44/42 mitogen activated protein kinase (MAPK), p38 MAPK, JNK/SAPK, and Akt. These results suggest that ginsenoside Rb1 is the most powerful component of PPD derivatives. In conclusion, ginsenoside Rb1 prevented high glucose-induced increase of fibronectin expression via the inhibition of MAPK-Akt signaling cascade.
Similar content being viewed by others
References
Attele, A. S., Wu, J. A., and Yuan, C. S., Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol., 58, 1685–1693 (1999).
Awazu, M., Ishikura, K., Hida, M., and Hoshiya, M., Mechanisms of mitogen-activated protein kinase activation in experimental diabetes. J. Am. Soc. Nephrol., 10, 738–745 (1999).
Bae, J. W. and Lee, M. H., Effect and putative mechanism of action of ginseng on the formation of glycated hemoglobin in vitro. J. Ethnopharmacol., 91, 137–140 (2004).
Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
Buettner, C., Yeh, G. Y., Phillips, R. S., Mittleman, M. A., and Kaptchuk, T. J., Systematic review of the effects of ginseng on cardiovascular risk factors. Ann. Pharmacother., 40, 83–95 (2006).
Catherwood, M. A., Powell, L. A., Anderson, P., McMaster, D., Sharpe, P. C., and Trimble, E. R., Glucose-induced oxidative stress in mesangial cells. Kidney Int., 61, 599–608 (2002).
Cho, W. C., Chung, W. S., Lee, S. K., Leung, A. W., Cheng, C. H., and Yue, K. K., Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur. J. Pharmacol., 550, 173–179 (2006).
Dey, L., Xie, J. T., Wang, A., Wu, J., Maleckar, S. A., and Yuan, C. S., Anti-hyperglycemic effects of ginseng: comparison between root and berry. Phytomedicine, 10, 600–605 (2003).
Jackle-Meyer, I., Szukics, B., Neubauer, K., Metze, V., Petzoldt, R., and Stolte, H., Extracellular matrix proteins as early markers in diabetic nephropathy. Eur. J. Clin. Chem. Clin. Biochem., 33, 211–219 (1995).
Jeong, S. I., Kwak, D. H., Lee, S., Choo, Y. K., Woo, W. H., Keum, K. S., Choi, B. K., and Jung, K. Y., Inhibitory effects of Cnidium officinale Makino and Tabanus fulvus Meigan on the high glucose-induced proliferation of glomerular mesangial cells. Phytomedicine, 12, 648–655 (2005).
Kato, M., Yuan, H., Xu, Z. G., Lanting, L., Li, S. L., Wang, M., Hu, M. C., Reddy, M. A., and Natarajan, R., Role of the Akt/FoxO3a pathway in TGF-beta1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J. Am. Soc. Nephrol., 17, 3325–3335 (2006).
Kiefer, D. and Pantuso, T., Panax ginseng. Am. Fam. Physician, 68, 1539–1542 (2003).
Kim, D. I., Lim, S. K., Park, M. J., Han, H. J., Kim, G. Y., and Park, S. H., The involvement of phosphatidylinositol 3- kinase/Akt signaling in high glucose-induced downregulation of GLUT-1 expression in ARPE cells. Life Sci., 80, 626–632 (2007).
Kobayashi, T., Matsumoto, T., and Kamata, K., The PI3-K/Akt pathway: roles related to alterations in vasomotor responses in diabetic models. J. Smooth Muscle Res., 41, 283–302 (2005).
Lee, G. T., Ha, H., Jung, M., Li, H., Hong, S. W., Cha, B. S., Lee, H. C., and Cho, Y. D., Delayed treatment with lithospermate B attenuates experimental diabetic renal injury. J. Am. Soc. Nephrol., 14, 709–720 (2003).
Li, Y. G., Chen, M., Chou, G. X., Wang, Z. T., and Hu, Z. B., Ruggedness/robustness evaluation and system suitability test on United States Pharmacopoeia XXVI assay ginsenosides in Asian and American ginseng by high-performance liquid chromatography. J. Pharm. Biomed. Anal., 35, 1083–1091 (2004).
Lin, C. L., Wang, F. S., Kuo, Y. R., Huang, Y. T., Huang, H. C., Sun, Y. C., and Kuo, Y. H., Ras modulation of superoxide activates ERK-dependent fibronectin expression in diabetes-induced renal injuries. Kidney Int., 69, 1593–1600 (2006).
Locatelli, F., Canaud, B., Eckardt, K. U., Stenvinkel, P., Wanner, C., and Zoccali, C., The importance of diabetic nephropathy in current nephrological practice. Nephrol. Dial. Transplant., 18, 1716–1725 (2003).
Mason, R. M. and Wahab, N. A., Extracellular matrix metabolism in diabetic nephropathy. J. Am. Soc. Nephrol., 14, 1358–1373 (2003).
Park, S. H., Lee, Y. J., Lim, M. J., Kim, E. J., Lee, J. H., and Han, H. J., High glucose inhibits fructose uptake in renal proximal tubule cells: involvement of cAMP, PLC/PKC, p44/42 MAPK, and cPLA2. J. Cell Physiol., 200, 407–416 (2004).
Purves, T., Middlemas, A., Agthong, S., Jude, E. B., Boulton, A. J., Fernyhough, P., and Tomlinson, D. R., A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J., 15, 2508–2514 (2001).
Sen, P., Mukherjee, S., Ray, D., and Raha, S., Involvement of the Akt/PKB signaling pathway with disease processes. Mol. Cell. Biochem., 253, 241–246 (2003).
Tian, W., Zhang, Z., and Cohen, D. M., MAPK signaling and the kidney. Am. J. Physiol. Renal Physiol., 279, F593–F604 (2000).
Vuksan, V. and Sievenpiper J. L., Herbal remedies in the management of diabetes: lessons learned from the study of ginseng. Nutr. Metab. Cardiovasc. Dis., 15, 149–160 (2005)
Wang, J., Huang, H., Liu, P., Tang, F., Qin, J., Huang, W., Chen, F., Guo, F., Liu, W., and Yang, B., Inhibition of phosphorylation of p38 MAPK involved in the protection of nephropathy by emodin in diabetic rats. Eur. J. Pharmacol., 553, 297–303 (2006).
Xie, J. T., Mchendale, S., and Yuan, C. S., Ginseng and diabetes. Am. J. Chin. Med., 33, 397–404 (2005a).
Xie, J. T., Mehendale, S. R., Wang, A., Han, A. H., Wu, J. A., Osinski, J., and Yuan, C. S., American ginseng leaf: ginsenoside analysis and hypoglycemic activity. Pharmacol. Res., 49, 113–117 (2004).
Xie, J. T., Wang, C. Z., Wang, A. B., Wu, J., Basila, D., and Yuan, C. S., Antihyperglycemic effects of total ginsenosides from leaves and stem of Panax ginseng. Acta Pharmacol. Sin., 26, 1104–1110 (2005b).
Xie, X. S., Liu, H. C., Yang, M., Zuo, C., Deng, Y., and Fan, J. M., Ginsenoside Rb1, a panoxadiol saponin against oxidative damage and renal interstitial fibrosis in rats with unilateral ureteral obstruction. Chin. J. Integr. Med., 15, 133–40 (2009).
Yip, T. T., Lau, C. N., Kong, Y. C., Yung, K. H., Kim, J. H., and Woo, W. S. Ginsenoside compositions of Panax ginseng C.A. Meyer tissue culture and juice. Am. J. Chin. Med., 13, 89–92 (1985).
Author information
Authors and Affiliations
Corresponding author
Additional information
These authors contributed equally to this work.
Rights and permissions
About this article
Cite this article
Park, M.J., Bae, C.S., Lim, S.K. et al. Effect of protopanaxadiol derivatives in high glucose-induced fibronectin expression in primary cultured rat mesangial cells: Role of mitogen-activated protein kinases and Akt. Arch. Pharm. Res. 33, 151–157 (2010). https://doi.org/10.1007/s12272-010-2237-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12272-010-2237-3