Abstract
Ubiquitin is highly conserved in most eukaryotes and involved in diverse physiological processes, including cell division, protein quality control, and protein degradation mediated by the ubiquitin-proteasome system after heat shock, glucose-starvation, and oxidative stress. However, the role of the ubiquitin gene UBI4, which contains five consecutive head-to-tail ubiquitin repeats, in meiosis has not been investigated. In this study, we show that the Saccharomyces cerevisiae polyubiquitin precursor gene, UBI4, is required to promote synaptonemal complex (SC) formation and suppress excess double-strand break formation. Moreover, the proportion of Zip1 polycomplexes, which indicate abnormal SC formation, in cells with a mutation in UBI4 (i.e., ubi4Δ cells) is higher than that of wild-type cells, implying that the UBI4 plays an important role in the early meiotic prophase I. Interestingly, although ubi4Δ cells rarely form full-length SCs in the pachytene stage of prophase I, the Zip3 foci are still seen, as in wild-type cells. Moreover, ubi4Δ cells proficiently form crossover and noncrossover products with a slight delay compared to wild-type cells, suggesting that UBI4 is dispensable in SC-coupled recombination. Our findings demonstrate that UBI4 exhibits dual functions that are associated with both positive and negative roles in SC formation and recombination during meiosis.
Similar content being viewed by others
References
Agarwal, S. and Roeder, G.S. 2000. Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102, 245–255.
Ahuja, J.S., Sandhu, R., Mainpal, R., Lawson, C., Henley, H., Hunt, P.A., Yanowitz, J.L., and Börner, G.V. 2017. Control of meiotic pairing and recombination by chromosomally tethered 26S proteasome. Science 355, 408–411.
Allers, T. and Lichten, M. 2001. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57.
Amm, I., Sommer, T., and Wolf, D. 2013. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim. Biophys. Acta 1843, 182–196.
Bachmair, A., Finley, D., and Varshavsky, A. 1986. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186.
Bhagwat, N.R., Owens, S.N., Ito, M., Boinapalli, J.V., Poa, P., Ditzel, A., Kopparapu, S., Mahalawat, M., Davies, O.R., Collins, S.R., et al. 2021. SUMO is a pervasive regulator of meiosis. eLife 10, e57720.
Bond, U. and Schlesinger, M.J. 1985. Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol. Cell Biol. 5, 949–956.
Börner, G.V., Kleckner, N., and Hunter, N. 2004. Crossover/non-crossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45.
Cahoon, C.K. and Hawley R.S. 2016. Regulating the construction and demolition of the synaptonemal complex. Nat. Struct. Mol. Biol. 23, 369–377.
Cheng, C.H., Lo, Y.H., Liang, S.S., Ti, S.C., Lin, F.M., Yeh, C.H., Huang, H.Y., and Wang, T.F. 2006. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20, 2067–2081.
Cheng, L., Watt, R., and Piper, P.W. 1994. Polyubiquitin gene expression contributes to oxidative stress resistance in respiratory yeast (Saccharomyces cerevisiae). Mol. Gen. Genet. 243, 358–362.
Cho, H.R., Kong, Y.J., Hong, S.G., and Kim, K.P. 2016. Hop2 and Sae3 are required for Dmc1-mediated double-strand break repair via homolog bias during meiosis. Mol. Cells 39, 550–556.
Chua, P.R. and Roeder, G.S. 1998. Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93, 349–359.
Ciechanover, A. and Schwartz, A.L. 1998. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc. Natl. Acad. Sci. USA 95, 2727–2730.
de los Santos, T., Hunter, N., Lee, C., Larkin, B., Loidl, J., and Hollingsworth, N.M. 2003. The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164, 81–94.
Dong, H. and Roeder, G.S. 2000. Organization of the yeast Zip1 protein within the central region of the synaptonemal complex. J. Cell Biol. 148, 417–426.
Dworkin-Rastl, E., Shrutkowski, A., and Dworkin, M.B. 1984. Multiple ubiquitin mRNAs during xenopus laevis development contain tandem repeats of the 76 amino acid coding sequence. Cell 39, 321–325.
Fang, N.N., Chan, G.T., Zhu, M., Comyn, S.A., Persaud, A., Deshaies, R.J., Rotin, D., Gsponer, J., and Mayor, T. 2014. Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat. Cell Biol. 16, 1227–1237.
Fang, N.N., Ng, A.H.M., Measday, V., and Mayor, T. 2011. Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat. Cell Biol. 13, 1344–1352.
Finley, D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513.
Finley, D., Bartel, B., and Varshavsky, A. 1989. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394–401.
Finley, D., Ozkaynak, E., and Varshavsky, A. 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046.
Fung, J.C., Rockmill, B., Odell, M., and Roeder, G.S. 2004. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795–802.
Gao, J. and Colaiácovo, M.P. 2018. Zipping and unzipping: protein modifications regulating synaptonemal complex dynamics. Trends Genet. 34, 232–245.
Gemayel, R., Yang, Y., Dzialo, M.C., Kominek, J., Vowinckel, J., Saels, V., Van Huffel, L., van der Zande, E., Ralser, M., Steensels, J., et al. 2017. Variable repeats in the eukaryotic polyubiquitin gene ubi4 modulate proteostasis and stress survival. Nat. Commun. 8, 397.
Goldberg, A.L. 2003. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899.
Gray, S. and Cohen, P.E. 2016. Control of meiotic crossovers: from double-strand break formation of designation. Annu. Rev. Genet. 50, 175–210.
He, W., Prasada Rao, H.B.D., Tang, S., Bhagwat, N., Kulkarni, D.S., Ma, Y., Chang, M., Hall, C., Bragg, J.W., Manasca, H.S., et al. 2020. Regulated proteolysis of MutSy controls meiotic crossing over. Mol. Cell 78, 168–183.
Hershko, A. and Ciechanover, A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479.
Hochstrasser, M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439.
Hong, S., Joo, J.H., Yun, H., and Kim, K.P. 2019a. The nature of meiotic chromosome dynamics and recombination in budding yeast. J. Microbiol. 57, 221–231.
Hong, S., Joo, J.H., Yun, H., Kleckner, N., and Kim, K.P. 2019b. Recruitment of Rec8, Pds5 and Rad61/Wapl to meiotic homolog pairing, recombination, axis formation and S-phase. Nucleic Acids Res. 47, 11691–11708.
Hong, S., Sung, Y., Yu, M., Lee, M., Kleckner, N., and Kim, K.P. 2013. The logic and mechanism of homologous recombination partner choice. Mol. Cell 51, 440–453.
Humphryes, N., Leung, W.K., Argunhan, B., Terentyev, Y., Dvorackova, M., and Tsubouchi, H. 2013. The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast. PLoS Genet. 9, e1003194.
Hunter, N. 2006. Meiotic recombination. In Aguilera, A. and Rothstein, R. (eds.), Molecular Genetics of Recombination, vol. 17, pp. 381–442. Springer, Berlin, Heidelberg, Germany.
Hunter, N. 2015. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618.
Hunter, N. and Kleckner, N. 2001. The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106, 59–70.
Joo, J.H., Kang, H.A., Kim, K.P., and Hong, S. 2022. Meiotic prophase roles of Pds5 in recombination and chromosome condensation in budding yeast. J. Microbiol. 60, 177–186.
Kauppi, L., Barchi, M., Lange, J., Baudat, F., Jasin, M., and Keeney, S. 2013. Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev. 27, 873–886.
Kim, K.P., Weiner, B.M., Zhang, L., Jordan, A., Dekker, J., and Kleckner, N. 2010. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143, 924–937.
Kleckner, N. 2006. Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115, 175–194.
Klein, F., Mahr, P., Galova, M., Buonomo, S.B., Michaelis, C., Nairz, K., and Nasmyth, K. 1999. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91–103.
Kong, Y.J., Joo, J.H., Kim, K.P., and Hong, S. 2017. Hed1 promotes meiotic crossover formation in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 27, 405–411.
Lee, M.S., Higashide, M.T., Choi, H., Li, K., Hong, S., Lee, K., Shinohara, A., Shinohara, M., and Kim, K.P. 2021. The synaptonemal complex central region modulates crossover pathways and feedback control of meiotic double-strand break formation. Nucleic Acids Res. 49, 7537–7553.
Leung, W.K., Humphryes, N., Afshar, N., Argunhan, B., Terentyev, Y., Tsubouchi, T., and Tsubouchi, H. 2015. The synaptonemal complex is assembled by a polySUMOylation-driven feedback mechanism in yeast. J. Cell Biol. 211, 785–793.
Libuda, D.E., Uzawa, S., Meyer, B.J., and Villeneuve, A.M. 2013. Meiotic chromosome structures constrain and respond to designation of crossover sites. Nature 502, 703–706.
Lynn, A., Soucek, R., and Börner, G.V. 2007. ZMM proteins during meiosis: crossover artists at work. Chromosome Res. 15, 591–605.
MacDiarmid, C.W., Taggart, J., Jeong, J., Kerdsomboon, K., and Eide, D.J. 2016. Activation of the yeast UBI4 polyubiquitin gene by Zap1 transcription factor via an intragenic promoter is critical for zinc-deficient growth. J. Biol. Chem. 291, 18880–18896.
Mohibullah, N. and Keeney, S. 2017. Numerical and spatial patterning of yeast meiotic DNA breaks by Tel1. Genome Res. 27, 278–288.
Molnar, M., Bähler, J., Sipiczki, M., and Kohli, J. 1995. The rec8 gene of Schizosaccharomyces pombe is involved in linear element formation, chromosome pairing and sister-chromatid cohesion during meiosis. Genetics 141, 61–73.
Mu, X., Murakami, H., Mohibullah, N., and Keeney, S. 2020. Chromosome-autonomous feedback down-regulates meiotic DNA break competence upon synaptonemal complex formation. Genes Dev. 34, 1605–1618.
Nandanan, K.G., Salim, S., Pankajam, A.V., Shinohara, M., Lin, G., Chakraborty, P., Farnaz, A., Steinmetz, L.M., Shinohara, A., and Nishant, K.T. 2021. Regulation of Msh4-Msh5 association with meiotic chromosomes in budding yeast. Genetics 219, iyab102.
Okazaki, K., Okayama, H., and Niwa, O. 2000. The polyubiquitin gene is essential for meiosis in fission yeast. Exp. Cell Res. 254, 143–152.
Özkaynak, E., Finley, D., Solomon, M.J., and Varshavsky, A. 1987. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J. 6, 1429–1439.
Özkaynak, E., Finley, D., and Varshavsky, A. 1984. The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 312, 663–666.
Page, S.L. and Hawley, R.S. 2004. The genetics and molecular biology of the synaptonemal complex. Annu. Rev. Cell Dev. Biol. 20, 525–558.
Parag, H.A., Raboy, B., and Kulka, R.G. 1987. Effect of heat shock on protein degradation in mammalian cells: involvement of the ubiquitin system. EMBO J. 6, 55–61.
Petronczki, M., Siomos., M.F., and Nasmyth, K. 2003. Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440.
Prasada Rao, H.B.D., Qiao, H., Bhatt, S.K., Bailey, L.R., Tran, H.D., Bourne, S.L., Qiu, W., Deshpande, A., Sharma, A.N., Beebout, C.J., et al. 2017. A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science 355, 403–407.
Pyatnitskaya, A., Borde, V., and De Muyt, A. 2019. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 128, 181–198.
Qiao, H., Prasada Rao, H.B.D., Yang, Y., Fong, J.H., Cloutier, J.M., Deacon, D.C., Nagel, K.E., Swartz, R.K., Strong, E., Holloway, J.K., et al. 2014. Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat. Genet. 46, 194–199.
Schlesinger, D.H. and Goldstein, G. 1975. Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature 255, 423–424.
Shiber, A., Breuer, W., Brandeis, M., and Ravid, T. 2013. Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting. Mol. Biol. Cell 24, 2076–2087.
Shinohara, M., Oh, S.D., Hunter, N., and Shinohara, A. 2008. Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nat. Genet. 40, 299–309.
Simon, J.R., Treger, J.M., and McEntee, K. 1999. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae. Mol. Microbiol. 31, 823–832.
Sym, M., Engebrecht, J.A., and Roeder, G.S. 1993. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365–378.
Sym, M. and Roeder, G.S. 1995. Zip1-induced changes in synaptonemal complex structure and polycomplex assembly. J. Cell Biol. 128, 455–466.
Tanaka, K., Matsumoto, K., and Toh-e, A. 1988. Dual regulation of the expression of the polyubiquitin gene by cyclic AMP and heat shock in yeast. EMBO J. 7, 495–502.
Thacker, D., Mohibullah, N., Zhu, X., and Keeney, S. 2014. Homologue engagement controls meiotic DNA break number and distribution. Nature 510, 241–246.
Treger, J.M., Heichman, K.A., and McEntee, K. 1988. Expression of the yeast UBI4 gene increases in response to DNA damaging agents and in meiosis. Mol. Cell Biol. 8, 1132–1136.
Tsubouchi, T., Zhao, H., and Roeder, G.S. 2006. The meiosis-specific Zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with Zip2. Dev. Cell 10, 809–819.
Voelkel-Meiman, K., Cheng, S.Y., Morehouse, S.J., and MacQueen, A.J. 2016. Synaptonemal complex proteins of budding yeast define reciprocal roles in MutSγ-mediated crossover formation. Genetics 203, 1091–1103.
Voelkel-Meiman, K., Taylor, L.F., Mukherjee, P., Humphryes, N., Tsubouchi, H., and Macqueen, A.J. 2013. SUMO localizes to the central element of synaptonemal complex and is required for the full synapsis of meiotic chromosomes in budding yeast. PLoS Genet. 9, e1003837.
Wang, S., Zickler, D., Kleckner, N., and Zhang, L. 2015. Meiotic crossover patterns: obligatory crossover, interference and homeostasis in a single process. Cell Cycle 14, 305–314.
Watt, R. and Piper, P.W. 1997. UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is a heat shock gene that is also subject to catabolite derepression control. Mol. Gen. Genet. 253, 439–447.
Wiborg, O., Pedersen, M.S., Wind, A., Berglund, L.E., Marcker, K.A., and Vuust, J. 1985. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 4, 755–759.
Yang, X., Song, M., Wang, Y., Tan, T., Tian, Z., Zhai, B., Yang, X., Tan, Y., Cao, Y., Dai, S., et al. 2022. The ubiquitin-proteasome system regulates meiotic chromosome organization. Proc. Natl. Acad. Sci. USA 119, e2106902119.
Yoon, S.W., Lee, M.S., Xaver, M., Zhang, L., Hong, S.G., Kong, Y.J., Cho, H.R., Kleckner, N., and Kim, K.P. 2016. Meiotic prophase roles of Rec8 in crossover recombination and chromosome structure. Nucleic Acids Res. 44, 9296–9314.
Zhang, L., Kim, K.P., Kleckner, N.E., and Storlazzi, A. 2011. Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. Proc. Natl. Acad. Sci. USA 13, 20036–20041.
Zhang, L., Wang, S., Yin, S., Hong, S., Kim, K.P., and Kleckner, N. 2014. Topoisomerase II mediates meiotic crossover interference. Nature 511, 551–556.
Zhu, Z., Bani Ismail, M., Shinohara, M., and Shinohara, A. 2020. SCFCdc4 ubiquitin ligase regulates synaptonemal complex formation during meiosis. Life Sci. Alliance 8, e202000933.
Zickler, D. and Kleckner, N. 1999. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754.
Zickler, D. and Kleckner, N. 2015. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7, a016626.
Acknowledgements
This research was supported by the National Research Foundation of Korea, funded by the Ministry of Science, ICT & Future Planning (2020R1A2C2011887) and by the Chung-Ang University Research Scholarship Grants in 2021.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Conflict of Interest
The authors have no conflict of interest to report.
Supplementary Materials
Rights and permissions
About this article
Cite this article
Jo, MK., Rhee, K., Kim, K.P. et al. Yeast polyubiquitin unit regulates synaptonemal complex formation and recombination during meiosis. J Microbiol. 60, 705–714 (2022). https://doi.org/10.1007/s12275-022-2204-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12275-022-2204-y