[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Yeast polyubiquitin unit regulates synaptonemal complex formation and recombination during meiosis

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope

Abstract

Ubiquitin is highly conserved in most eukaryotes and involved in diverse physiological processes, including cell division, protein quality control, and protein degradation mediated by the ubiquitin-proteasome system after heat shock, glucose-starvation, and oxidative stress. However, the role of the ubiquitin gene UBI4, which contains five consecutive head-to-tail ubiquitin repeats, in meiosis has not been investigated. In this study, we show that the Saccharomyces cerevisiae polyubiquitin precursor gene, UBI4, is required to promote synaptonemal complex (SC) formation and suppress excess double-strand break formation. Moreover, the proportion of Zip1 polycomplexes, which indicate abnormal SC formation, in cells with a mutation in UBI4 (i.e., ubi4Δ cells) is higher than that of wild-type cells, implying that the UBI4 plays an important role in the early meiotic prophase I. Interestingly, although ubi4Δ cells rarely form full-length SCs in the pachytene stage of prophase I, the Zip3 foci are still seen, as in wild-type cells. Moreover, ubi4Δ cells proficiently form crossover and noncrossover products with a slight delay compared to wild-type cells, suggesting that UBI4 is dispensable in SC-coupled recombination. Our findings demonstrate that UBI4 exhibits dual functions that are associated with both positive and negative roles in SC formation and recombination during meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, S. and Roeder, G.S. 2000. Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102, 245–255.

    Article  CAS  PubMed  Google Scholar 

  • Ahuja, J.S., Sandhu, R., Mainpal, R., Lawson, C., Henley, H., Hunt, P.A., Yanowitz, J.L., and Börner, G.V. 2017. Control of meiotic pairing and recombination by chromosomally tethered 26S proteasome. Science 355, 408–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allers, T. and Lichten, M. 2001. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57.

    Article  CAS  PubMed  Google Scholar 

  • Amm, I., Sommer, T., and Wolf, D. 2013. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim. Biophys. Acta 1843, 182–196.

    Article  PubMed  CAS  Google Scholar 

  • Bachmair, A., Finley, D., and Varshavsky, A. 1986. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Bhagwat, N.R., Owens, S.N., Ito, M., Boinapalli, J.V., Poa, P., Ditzel, A., Kopparapu, S., Mahalawat, M., Davies, O.R., Collins, S.R., et al. 2021. SUMO is a pervasive regulator of meiosis. eLife 10, e57720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond, U. and Schlesinger, M.J. 1985. Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol. Cell Biol. 5, 949–956.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Börner, G.V., Kleckner, N., and Hunter, N. 2004. Crossover/non-crossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45.

    Article  PubMed  Google Scholar 

  • Cahoon, C.K. and Hawley R.S. 2016. Regulating the construction and demolition of the synaptonemal complex. Nat. Struct. Mol. Biol. 23, 369–377.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, C.H., Lo, Y.H., Liang, S.S., Ti, S.C., Lin, F.M., Yeh, C.H., Huang, H.Y., and Wang, T.F. 2006. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20, 2067–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, L., Watt, R., and Piper, P.W. 1994. Polyubiquitin gene expression contributes to oxidative stress resistance in respiratory yeast (Saccharomyces cerevisiae). Mol. Gen. Genet. 243, 358–362.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H.R., Kong, Y.J., Hong, S.G., and Kim, K.P. 2016. Hop2 and Sae3 are required for Dmc1-mediated double-strand break repair via homolog bias during meiosis. Mol. Cells 39, 550–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua, P.R. and Roeder, G.S. 1998. Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93, 349–359.

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover, A. and Schwartz, A.L. 1998. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc. Natl. Acad. Sci. USA 95, 2727–2730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de los Santos, T., Hunter, N., Lee, C., Larkin, B., Loidl, J., and Hollingsworth, N.M. 2003. The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164, 81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, H. and Roeder, G.S. 2000. Organization of the yeast Zip1 protein within the central region of the synaptonemal complex. J. Cell Biol. 148, 417–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dworkin-Rastl, E., Shrutkowski, A., and Dworkin, M.B. 1984. Multiple ubiquitin mRNAs during xenopus laevis development contain tandem repeats of the 76 amino acid coding sequence. Cell 39, 321–325.

    Article  CAS  PubMed  Google Scholar 

  • Fang, N.N., Chan, G.T., Zhu, M., Comyn, S.A., Persaud, A., Deshaies, R.J., Rotin, D., Gsponer, J., and Mayor, T. 2014. Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat. Cell Biol. 16, 1227–1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, N.N., Ng, A.H.M., Measday, V., and Mayor, T. 2011. Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat. Cell Biol. 13, 1344–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finley, D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finley, D., Bartel, B., and Varshavsky, A. 1989. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394–401.

    Article  CAS  PubMed  Google Scholar 

  • Finley, D., Ozkaynak, E., and Varshavsky, A. 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046.

    Article  CAS  PubMed  Google Scholar 

  • Fung, J.C., Rockmill, B., Odell, M., and Roeder, G.S. 2004. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795–802.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J. and Colaiácovo, M.P. 2018. Zipping and unzipping: protein modifications regulating synaptonemal complex dynamics. Trends Genet. 34, 232–245.

    Article  CAS  PubMed  Google Scholar 

  • Gemayel, R., Yang, Y., Dzialo, M.C., Kominek, J., Vowinckel, J., Saels, V., Van Huffel, L., van der Zande, E., Ralser, M., Steensels, J., et al. 2017. Variable repeats in the eukaryotic polyubiquitin gene ubi4 modulate proteostasis and stress survival. Nat. Commun. 8, 397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldberg, A.L. 2003. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899.

    Article  CAS  PubMed  Google Scholar 

  • Gray, S. and Cohen, P.E. 2016. Control of meiotic crossovers: from double-strand break formation of designation. Annu. Rev. Genet. 50, 175–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, W., Prasada Rao, H.B.D., Tang, S., Bhagwat, N., Kulkarni, D.S., Ma, Y., Chang, M., Hall, C., Bragg, J.W., Manasca, H.S., et al. 2020. Regulated proteolysis of MutSy controls meiotic crossing over. Mol. Cell 78, 168–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko, A. and Ciechanover, A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479.

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser, M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439.

    Article  CAS  PubMed  Google Scholar 

  • Hong, S., Joo, J.H., Yun, H., and Kim, K.P. 2019a. The nature of meiotic chromosome dynamics and recombination in budding yeast. J. Microbiol. 57, 221–231.

    Article  CAS  PubMed  Google Scholar 

  • Hong, S., Joo, J.H., Yun, H., Kleckner, N., and Kim, K.P. 2019b. Recruitment of Rec8, Pds5 and Rad61/Wapl to meiotic homolog pairing, recombination, axis formation and S-phase. Nucleic Acids Res. 47, 11691–11708.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, S., Sung, Y., Yu, M., Lee, M., Kleckner, N., and Kim, K.P. 2013. The logic and mechanism of homologous recombination partner choice. Mol. Cell 51, 440–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphryes, N., Leung, W.K., Argunhan, B., Terentyev, Y., Dvorackova, M., and Tsubouchi, H. 2013. The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast. PLoS Genet. 9, e1003194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter, N. 2006. Meiotic recombination. In Aguilera, A. and Rothstein, R. (eds.), Molecular Genetics of Recombination, vol. 17, pp. 381–442. Springer, Berlin, Heidelberg, Germany.

    Google Scholar 

  • Hunter, N. 2015. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter, N. and Kleckner, N. 2001. The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106, 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Joo, J.H., Kang, H.A., Kim, K.P., and Hong, S. 2022. Meiotic prophase roles of Pds5 in recombination and chromosome condensation in budding yeast. J. Microbiol. 60, 177–186.

    Article  CAS  PubMed  Google Scholar 

  • Kauppi, L., Barchi, M., Lange, J., Baudat, F., Jasin, M., and Keeney, S. 2013. Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev. 27, 873–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, K.P., Weiner, B.M., Zhang, L., Jordan, A., Dekker, J., and Kleckner, N. 2010. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143, 924–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleckner, N. 2006. Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115, 175–194.

    Article  PubMed  Google Scholar 

  • Klein, F., Mahr, P., Galova, M., Buonomo, S.B., Michaelis, C., Nairz, K., and Nasmyth, K. 1999. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91–103.

    Article  CAS  PubMed  Google Scholar 

  • Kong, Y.J., Joo, J.H., Kim, K.P., and Hong, S. 2017. Hed1 promotes meiotic crossover formation in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 27, 405–411.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M.S., Higashide, M.T., Choi, H., Li, K., Hong, S., Lee, K., Shinohara, A., Shinohara, M., and Kim, K.P. 2021. The synaptonemal complex central region modulates crossover pathways and feedback control of meiotic double-strand break formation. Nucleic Acids Res. 49, 7537–7553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung, W.K., Humphryes, N., Afshar, N., Argunhan, B., Terentyev, Y., Tsubouchi, T., and Tsubouchi, H. 2015. The synaptonemal complex is assembled by a polySUMOylation-driven feedback mechanism in yeast. J. Cell Biol. 211, 785–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libuda, D.E., Uzawa, S., Meyer, B.J., and Villeneuve, A.M. 2013. Meiotic chromosome structures constrain and respond to designation of crossover sites. Nature 502, 703–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynn, A., Soucek, R., and Börner, G.V. 2007. ZMM proteins during meiosis: crossover artists at work. Chromosome Res. 15, 591–605.

    Article  CAS  PubMed  Google Scholar 

  • MacDiarmid, C.W., Taggart, J., Jeong, J., Kerdsomboon, K., and Eide, D.J. 2016. Activation of the yeast UBI4 polyubiquitin gene by Zap1 transcription factor via an intragenic promoter is critical for zinc-deficient growth. J. Biol. Chem. 291, 18880–18896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohibullah, N. and Keeney, S. 2017. Numerical and spatial patterning of yeast meiotic DNA breaks by Tel1. Genome Res. 27, 278–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar, M., Bähler, J., Sipiczki, M., and Kohli, J. 1995. The rec8 gene of Schizosaccharomyces pombe is involved in linear element formation, chromosome pairing and sister-chromatid cohesion during meiosis. Genetics 141, 61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu, X., Murakami, H., Mohibullah, N., and Keeney, S. 2020. Chromosome-autonomous feedback down-regulates meiotic DNA break competence upon synaptonemal complex formation. Genes Dev. 34, 1605–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandanan, K.G., Salim, S., Pankajam, A.V., Shinohara, M., Lin, G., Chakraborty, P., Farnaz, A., Steinmetz, L.M., Shinohara, A., and Nishant, K.T. 2021. Regulation of Msh4-Msh5 association with meiotic chromosomes in budding yeast. Genetics 219, iyab102.

    Article  PubMed  Google Scholar 

  • Okazaki, K., Okayama, H., and Niwa, O. 2000. The polyubiquitin gene is essential for meiosis in fission yeast. Exp. Cell Res. 254, 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Özkaynak, E., Finley, D., Solomon, M.J., and Varshavsky, A. 1987. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J. 6, 1429–1439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Özkaynak, E., Finley, D., and Varshavsky, A. 1984. The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 312, 663–666.

    Article  PubMed  Google Scholar 

  • Page, S.L. and Hawley, R.S. 2004. The genetics and molecular biology of the synaptonemal complex. Annu. Rev. Cell Dev. Biol. 20, 525–558.

    Article  CAS  PubMed  Google Scholar 

  • Parag, H.A., Raboy, B., and Kulka, R.G. 1987. Effect of heat shock on protein degradation in mammalian cells: involvement of the ubiquitin system. EMBO J. 6, 55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petronczki, M., Siomos., M.F., and Nasmyth, K. 2003. Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440.

    Article  CAS  PubMed  Google Scholar 

  • Prasada Rao, H.B.D., Qiao, H., Bhatt, S.K., Bailey, L.R., Tran, H.D., Bourne, S.L., Qiu, W., Deshpande, A., Sharma, A.N., Beebout, C.J., et al. 2017. A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science 355, 403–407.

    Article  CAS  PubMed Central  Google Scholar 

  • Pyatnitskaya, A., Borde, V., and De Muyt, A. 2019. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 128, 181–198.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, H., Prasada Rao, H.B.D., Yang, Y., Fong, J.H., Cloutier, J.M., Deacon, D.C., Nagel, K.E., Swartz, R.K., Strong, E., Holloway, J.K., et al. 2014. Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat. Genet. 46, 194–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlesinger, D.H. and Goldstein, G. 1975. Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature 255, 423–424.

    Article  CAS  PubMed  Google Scholar 

  • Shiber, A., Breuer, W., Brandeis, M., and Ravid, T. 2013. Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting. Mol. Biol. Cell 24, 2076–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara, M., Oh, S.D., Hunter, N., and Shinohara, A. 2008. Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nat. Genet. 40, 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Simon, J.R., Treger, J.M., and McEntee, K. 1999. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae. Mol. Microbiol. 31, 823–832.

    Article  CAS  PubMed  Google Scholar 

  • Sym, M., Engebrecht, J.A., and Roeder, G.S. 1993. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365–378.

    Article  CAS  PubMed  Google Scholar 

  • Sym, M. and Roeder, G.S. 1995. Zip1-induced changes in synaptonemal complex structure and polycomplex assembly. J. Cell Biol. 128, 455–466.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K., Matsumoto, K., and Toh-e, A. 1988. Dual regulation of the expression of the polyubiquitin gene by cyclic AMP and heat shock in yeast. EMBO J. 7, 495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thacker, D., Mohibullah, N., Zhu, X., and Keeney, S. 2014. Homologue engagement controls meiotic DNA break number and distribution. Nature 510, 241–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treger, J.M., Heichman, K.A., and McEntee, K. 1988. Expression of the yeast UBI4 gene increases in response to DNA damaging agents and in meiosis. Mol. Cell Biol. 8, 1132–1136.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsubouchi, T., Zhao, H., and Roeder, G.S. 2006. The meiosis-specific Zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with Zip2. Dev. Cell 10, 809–819.

    Article  CAS  PubMed  Google Scholar 

  • Voelkel-Meiman, K., Cheng, S.Y., Morehouse, S.J., and MacQueen, A.J. 2016. Synaptonemal complex proteins of budding yeast define reciprocal roles in MutSγ-mediated crossover formation. Genetics 203, 1091–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voelkel-Meiman, K., Taylor, L.F., Mukherjee, P., Humphryes, N., Tsubouchi, H., and Macqueen, A.J. 2013. SUMO localizes to the central element of synaptonemal complex and is required for the full synapsis of meiotic chromosomes in budding yeast. PLoS Genet. 9, e1003837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, S., Zickler, D., Kleckner, N., and Zhang, L. 2015. Meiotic crossover patterns: obligatory crossover, interference and homeostasis in a single process. Cell Cycle 14, 305–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt, R. and Piper, P.W. 1997. UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is a heat shock gene that is also subject to catabolite derepression control. Mol. Gen. Genet. 253, 439–447.

    Article  CAS  PubMed  Google Scholar 

  • Wiborg, O., Pedersen, M.S., Wind, A., Berglund, L.E., Marcker, K.A., and Vuust, J. 1985. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 4, 755–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X., Song, M., Wang, Y., Tan, T., Tian, Z., Zhai, B., Yang, X., Tan, Y., Cao, Y., Dai, S., et al. 2022. The ubiquitin-proteasome system regulates meiotic chromosome organization. Proc. Natl. Acad. Sci. USA 119, e2106902119.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, S.W., Lee, M.S., Xaver, M., Zhang, L., Hong, S.G., Kong, Y.J., Cho, H.R., Kleckner, N., and Kim, K.P. 2016. Meiotic prophase roles of Rec8 in crossover recombination and chromosome structure. Nucleic Acids Res. 44, 9296–9314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Kim, K.P., Kleckner, N.E., and Storlazzi, A. 2011. Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. Proc. Natl. Acad. Sci. USA 13, 20036–20041.

    Article  Google Scholar 

  • Zhang, L., Wang, S., Yin, S., Hong, S., Kim, K.P., and Kleckner, N. 2014. Topoisomerase II mediates meiotic crossover interference. Nature 511, 551–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Z., Bani Ismail, M., Shinohara, M., and Shinohara, A. 2020. SCFCdc4 ubiquitin ligase regulates synaptonemal complex formation during meiosis. Life Sci. Alliance 8, e202000933.

    Google Scholar 

  • Zickler, D. and Kleckner, N. 1999. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754.

    Article  CAS  PubMed  Google Scholar 

  • Zickler, D. and Kleckner, N. 2015. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7, a016626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea, funded by the Ministry of Science, ICT & Future Planning (2020R1A2C2011887) and by the Chung-Ang University Research Scholarship Grants in 2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keun Pil Kim or Soogil Hong.

Additional information

Conflict of Interest

The authors have no conflict of interest to report.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, MK., Rhee, K., Kim, K.P. et al. Yeast polyubiquitin unit regulates synaptonemal complex formation and recombination during meiosis. J Microbiol. 60, 705–714 (2022). https://doi.org/10.1007/s12275-022-2204-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-2204-y

Keywords

Navigation