[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition

  • Research Article
  • Published:
Nano Research Aims and scope

Abstract

A wearable and high-precision sensor for sound signal acquisition and recognition was fabricated from thin films of specially designed graphene woven fabrics (GWFs). Upon being stretched, a high density of random cracks appears in the network, which decreases the current pathways, thereby increasing the resistance. Therefore, the film could act as a strain sensor on the human throat in order to measure one’s speech through muscle movement, regardless of whether or not a sound is produced. The ultra-high sensitivity allows for the realization of rapid and low-frequency speech sampling by extracting the signature characteristics of sound waves. In this study, representative signals of 26 English letters, typical Chinese characters and tones, and even phrases and sentences were tested, revealing obvious and characteristic changes in resistance. Furthermore, resistance changes of the graphene sensor responded perfectly with pre-recorded sounds. By combining artificial intelligence with digital signal processing, we expect that, in the future, this graphene sensor will be able to successfully negotiate complex acoustic systems and large quantities of audio data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabiner, L. R. A tutorial on hidden Markov models and selected applications in speech recognition. P. IEEE. 1989, 77, 257–286.

    Article  Google Scholar 

  2. Sharma, N.; Gedeon, T. Objective measures, sensors and computational techniques for stress recognition and classification: A survey. Comput. Meth. Prog. Bio. 2012, 108, 1287–1301.

    Article  Google Scholar 

  3. Shannon, R. V.; Zeng, F. G.; Kamath, V.; Wygonski, J.; Ekelid, M. Speech recognition with primarily temporal cues. Science 1995, 270, 303–304.

    Article  Google Scholar 

  4. Shykhon, M. E.; Morgan, D. W.; Dutta, R.; Hines, E. L.; Gradner, J. W. Clinical evaluation of the electronic nose in the diagnosis of ear, nose and throat infection: A preliminary study. J. Laryngol. Otol. 2004, 118, 706–709.

    Google Scholar 

  5. Porwancher, R.; Sheth, A.; Remphrey, S.; Taylor, E.; Hinkle, C.; Zervos, M. Epidemiological study of hospital-acquired infection with vancomycin-resistant enterococcus faccium: Possible transmission by an electronic ear-probe thermometer. Cont. Hosp. Ep. 1997, 18, 771–773

    Article  Google Scholar 

  6. Hammock, M. L.; Chortos, A.; Tee, B. C. K.; Tok, J. B. H.; Bao Z. N. 25th anniversary article: The evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997–6037.

    Article  Google Scholar 

  7. Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

    Article  Google Scholar 

  8. Wang, Y.; Wang, L.; Yang, T. T.; Li, X.; Zang, X. B.; Zhu, M.; Wang, K. L.; Wu, D. H.; Zhu, H. W. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 2014, 24, 4666–4670.

    Article  Google Scholar 

  9. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  Google Scholar 

  10. Xu, S.; Zhang, Y. H.; Jia, L.; Mathwson, K. E.; Jang, K. I.; Kim, J.; Fu, H. R.; Huang, X.; Chava, P.; Wang, R. H. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014, 344, 70–74.

    Article  Google Scholar 

  11. Son, D.; Lee, J.; Qiao, S. T.; Ghaffari R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotecnol. 2014, 9, 397–404.

    Article  Google Scholar 

  12. Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. DOI: 10.1038/ncomms4132.

  13. Sokolov, A. N.; Tee, B. C. K.; Bettinger, C. J.; Tok, J. B. H.; Bao, Z. N. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc. Chem. Res. 2012, 45, 361–371.

    Article  Google Scholar 

  14. Meital, S. B.; Hossam, H. Flexible sensors based on nanoparticles. ACS Nano. 2013, 7, 8366–8378.

    Article  Google Scholar 

  15. Sun, D. M.; Liu, C.; Ren, W. C.; Cheng, H. M. A revies of carbon nanotube- and graphene-based flexible thin-film transistors. Small 2013, 9, 1188–1205.

    Article  Google Scholar 

  16. Rolnick, H. Tension coefficient of resistance of matals. Phys. Rev. 1930, 36, 506–512.

    Article  Google Scholar 

  17. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

    Article  Google Scholar 

  18. Frank; Russel, A.; Pierce, H. F.; Eric, C. Electric resistance strain gauges. U.S. Patent 2, 2429087, Oct. 14, 1947.

    Google Scholar 

  19. Rasmussen, P. A.; Thaysen, J.; Hansen, O.; Eriksen, S. C.; Bisen, A. Optimised cantilever biosensor with piezoresistive read-out. Ultramicroscopy 2003, 97, 371–376.

    Article  Google Scholar 

  20. Cao, J.; Wang, Q.; Dai, H. J. Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 2003, 90, 157601.

    Article  Google Scholar 

  21. Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano. Lett. 2008, 8, 3035–3040.

    Article  Google Scholar 

  22. Li, X.; Sun, P. Z.; Fan, L. L.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Cheng, Y.; Zhu H. W. Multifunctional graphene woven fabrics. Sci. Rep. 2012, 2, 395.

    Google Scholar 

  23. Li, X.; Zhang, R. J.; Yu, W. J.; Wang, K. L.; Wei, J. Q.; Wu, D. H.; Cao, A. Y.; Li, Z. H.; Cheng, Y.; Zheng, Q. S. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870.

    Google Scholar 

  24. Carpi, F.; Gallone, G.; Galantini, F.; De Rossi, D. Silicone-poly(hexylthiophene) blends as elastomers with enhanced electromechanical transduction properties. Adv. Funct. Mater. 2008, 18, 235–241.

    Article  Google Scholar 

  25. Mi, Y. L.; Chan Y. N.; Trau, D.; Huang P. B.; Chen, E. Micromolding of PDMS scaffolds and microwells for tissue culture and cell patterning: A new method of microfabrication by the self-assembled micropatterns of diblock copolymer micelles. Polymer 2006, 47, 5124–5130.

    Article  Google Scholar 

  26. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakannni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene film on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  27. Balaban, N. Q.; Schwarz, U. S.; Riveline, D.; Goichberg, P.; Tzur, G.; Sabanay, I.; Mahalu, D.; Safran, S.; Bershadsky, A.; Addadi, L. et al. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 2001, 3, 466–472.

    Article  Google Scholar 

  28. Lee, M.; Chen, C. Y.; Wang, S.; Cha, S. N.; Park, Y. J.; Kim, J. M.; Chou, L. J.; Wang. Z. L. A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 2012, 24, 1759–1764.

    Article  Google Scholar 

  29. Xiao, X.; Yuan, L. Y.; Zhong, J. W.; Ding, T. P.; Liu, Y.; Cai, Z. X.; Rong, Y. G.; Han, H. Y.; Zhou, J.; Wang Z. L. High-strain sensors based on ZeO nanowire/polystyrene hybridized flexible films. Adv. Mater. 2011, 23, 5440–5444.

    Article  Google Scholar 

  30. Luo, S. D.; Liu, T. SWCNT/graphite nanoplatelet hybrid thin films for self-temperature-compensated, highly sensitive, and extensible piezoresistive sensors. Adv. Mater. 2013, 25, 5650–5657.

    Article  Google Scholar 

  31. Zhu, B. W.; Niu, Z. Q.; Wang, H.; Leow, W. R.; Wang, H.; Li, Y. G.; Zheng, L. Y.; Wei, J.; Huo, F. W.; Chen X. D. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 2014, 10, 3625–3631.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, T., Lao, J. et al. Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition. Nano Res. 8, 1627–1636 (2015). https://doi.org/10.1007/s12274-014-0652-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0652-3

Keywords