[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Exosomes: Cell-Free Therapy for Cardiovascular Diseases

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVDs) are an important cause of death and disease worldwide. Because injured cardiac tissue cannot be repaired itself, it is urgent to develop other alternate therapies. Stem cells can be differentiated into cardiomyocytes, endothelial cells, and vascular smooth muscle cells for the treatment of CVDs. Therefore, cell therapy has recently been considered a viable treatment option that can significantly improve cardiac function. Nonetheless, implanted stem cells rarely survive in the recipient heart, suggesting that the benefits of stem cell therapy may involve other mechanisms. Exosomes derived from stem cells have a myocardial protection function after myocardial injury, and may be a promising and effective therapy for CVDs. Here, we discuss the application and mechanism of exosomes derived from stem cells in the diagnosis and treatment of CVDs and provide evidence for the application of exosomes in CVDs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AMI:

Acute myocardial infarction

CVDs:

Cardiovascular diseases

CPCs:

Cardiac progenitor cells

ESCs:

Embryonic stem cells

EVs:

Extracellular vesicles

HUVECs:

Human umbilical vein endothelial cells

iPSCs:

Induced pluripotent stem cells

MSCs:

Mesenchymal stem cell

miRNAs, miRs:

MicroRNAs

mRNAs:

Messenger RNAs

lncRNAs:

Long noncoding RNAs

References

  1. Silvestre, J. S. (2016). Stem cell therapy for cardiovascular diseases. Artery Research, 16, 45–45.

    Google Scholar 

  2. Terashvili, M., & Bosnjak, Z. J. (2019). Stem cell therapies in cardiovascular disease. Journal of Cardiothoracic and Vascular Anesthesia, 33(1), 209–222.

    PubMed  Google Scholar 

  3. Bagno, L., Hatzistergos, K. E., Balkan, W., & Hare, J. M. (2018). Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Molecular Therapy, 26(7), 1610–1623.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., Krishnamurthy, P., & Ramirez, V. (2015). Embryonic stem cell–derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117(1), 52–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Musunuru, K., Sheikh, F., Gupta, R. M., Houser, S. R., Maher, K. O., Milan, D. J., & Wu, J. C. (2018). Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the American Heart Association. Circulation: Genomic and Precision Medicine, 11(1), e000043.

    Google Scholar 

  6. Maki, K. C., & Dicklin, M. R. (2018). Assessing cardiovascular disease risk and responses to preventive therapies in clinical practice. Current Atherosclerosis Reports, 20(5), 23.

    PubMed  Google Scholar 

  7. Ni, J., Sun, Y., & Liu, Z. (2019). The potential of stem cells and stem cell-derived exosomes in treating cardiovascular diseases. Journal of Cardiovascular Translational Research, 12(1), 51–61.

    PubMed  Google Scholar 

  8. Yuan, Y., Du, W., Liu, J., Ma, W., Zhang, L., Du, Z., & Cai, B. (2018). Stem cell-derived exosome in cardiovascular diseases: macro roles of micro particles. Frontiers in pharmacology, 9.

  9. Lazar, E., Benedek, T., Korodi, S., Rat, N., Lo, J., & Benedek, I. (2018). Stem cell-derived exosomes-an emerging tool for myocardial regeneration. World journal of stem cells, 10(8), 106.

    PubMed  PubMed Central  Google Scholar 

  10. Wang, J., Zhao, C., & Xiao, J. (2019). Exosomes in cardiovascular diseases and treatment: experimental and clinical aspects. Journal of Cardiovascular Translational Research, 12, 1–2.

    PubMed  Google Scholar 

  11. Gartz, M., & Strande, J. L. (2018). Examining the paracrine effects of exosomes in cardiovascular disease and repair. Journal of the American Heart Association, 7(11), e007954.

    PubMed  PubMed Central  Google Scholar 

  12. Poe, A. J., & Knowlton, A. A. (2018). Exosomes and cardiovascular cell–cell communication. Essays in Biochemistry, 62(2), 193–204.

    PubMed  Google Scholar 

  13. Théry, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nature Reviews Immunology, 2(8), 569.

    PubMed  Google Scholar 

  14. Vlassov, A. V., Magdaleno, S., Setterquist, R., & Conrad, R. (2012). Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(7), 940–948.

    CAS  Google Scholar 

  15. Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75(2), 193–208.

    CAS  PubMed  Google Scholar 

  16. Barile, L., & Vassalli, G. (2017). Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacology & Therapeutics, 174, 63–78.

    CAS  Google Scholar 

  17. Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., & Mi, S. (2015). Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13(1), 17–24.

    CAS  Google Scholar 

  18. Zhang, Y., Liu, Y., Liu, H., & Tang, W. H. (2019). Exosomes: biogenesis, biologic function and clinical potential. Cell & Bioscience, 9(1), 19.

    Google Scholar 

  19. Parizadeh, S. M., Jafarzadeh-Esfehani, R., Ghandehari, M., Parizadeh, S. M., Hassanian, S. M., Rezayi, M., & Avan, A. (2018). Circulating exosomes as potential biomarkers in cardiovascular disease. Current Pharmaceutical Design, 24(37), 4436–4444.

    CAS  PubMed  Google Scholar 

  20. Brahim, A. G. E., Cheng, K., & Marbán, E. (2014). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2(5), 606–619.

    Google Scholar 

  21. Xitong, D., & Xiaorong, Z. (2016). Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene, 575(2), 377–384.

    PubMed  Google Scholar 

  22. Das, S., & Halushka, M. K. (2015). Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovascular Pathology, 24(4), 199–206.

    CAS  PubMed  Google Scholar 

  23. Zhang, Y., Hu, Y. W., Zheng, L., & Wang, Q. (2017). Characteristics and roles of exosomes in cardiovascular disease. DNA and Cell Biology, 36(3), 202–211.

    CAS  PubMed  Google Scholar 

  24. Khan, M., & Kishore, R. (2017). Stem cell exosomes: cell-free therapy for organ repair. Methods in Molecular Biology, 1553, 315–321.

    CAS  PubMed  Google Scholar 

  25. Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., & Ingwall, J. S. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Medicine, 11(4), 367.

    CAS  PubMed  Google Scholar 

  26. Mirotsou, M., Jayawardena, T. M., Schmeckpeper, J., Gnecchi, M., & Dzau, V. J. (2011). Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. Journal of Molecular and Cellular Cardiology, 50(2), 280–289.

    CAS  PubMed  Google Scholar 

  27. Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 27, 19–23.

    CAS  PubMed  Google Scholar 

  28. Ong, S. G., & Wu, J. C. (2015). Exosomes as potential alternatives to stem cell therapy in mediating cardiac regeneration. Circulation Research, 117, 7–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Menasché, P., Vanneaux, V., Hagège, A., Bel, A., Cholley, B., Parouchev, A., & Agbulut, O. (2018). Transplantation of human embryonic stem cell–derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. Journal of the American College of Cardiology, 71(4), 429–438.

    PubMed  Google Scholar 

  30. Lynch, A. T., Mazzotta, S., & Hoppler, S. (2018). Cardiomyocyte differentiation from mouse embryonic stem cells. In Experimental models of cardiovascular diseases. Humana Press, New York, NY 55-66.

  31. Song, Y. H., Shao, L., Zhang, Y., Zhou, J., Liu, B., Pan, X., & Li, Y. (2017). Exosomes derived from embryonic stem cells as potential treatment for cardiovascular diseases. Advances in Experimental Medicine & Biology, 998, 187–206.

    CAS  Google Scholar 

  32. Vaskova, E., Tada, Y., von Bornstaedt, D., Woo, Y., & Yang, P. (2018). Pleiotropic effects of the Exosomes from IPSC-derivatives in restoring injured myocardium. Journal of the American College of Cardiology, 71(11 Supplement), A80.

    Google Scholar 

  33. Bobis-Wozowicz, S., Kmiotek, K., Sekula, M., Kedracka-Krok, S., Kamycka, E., Adamiak, M., & Kolcz, J. (2015). Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior. Stem Cells, 33(9), 2748–2761.

    CAS  PubMed  Google Scholar 

  34. Wang, Y., Zhang, L., Li, Y., Chen, L., Wang, X., Guo, W., & Liu, Y. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology, 192, 61–69.

    PubMed  PubMed Central  Google Scholar 

  35. Yang, P. C. (2018). Induced pluripotent stem cell (iPSC)–derived exosomes for precision medicine in heart failure. Circulation Research, 122(5), 661–663.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, J., Ghoroghi, S., Benito-Martin, A., Wu, H., Unachukwu, U. J., Einbond, L. S., & Redenti, S. (2016). Characterization of induced pluripotent stem cell microvesicle genesis, morphology and pluripotent content. Scientific Reports, 6, 19743.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang, L., Ma, W., Ma, Y., Feng, D., Chen, H., & Cai, B. (2015). Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? International Journal of Biological Sciences, 11(2), 238.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Suzuki, E., Fujita, D., Takahashi, M., Oba, S., & Nishimatsu, H. (2017). Therapeutic effects of mesenchymal stem cell-derived exosomes in cardiovascular disease. In Exosomes in cardiovascular diseases, 998, 179–185.

    CAS  Google Scholar 

  39. Ju, C., Shen, Y., Ma, G., Liu, Y., Cai, J., Kim, I. M., & Tang, Y. (2018). Transplantation of cardiac mesenchymal stem cell-derived exosomes promotes repair in ischemic myocardium. Journal of Cardiovascular Translational Research, 11(5), 420–428.

    PubMed  PubMed Central  Google Scholar 

  40. Teng, X., Chen, L., Chen, W., Yang, J., Yang, Z., & Shen, Z. (2015). Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cellular Physiology and Biochemistry, 37(6), 2415–2424.

    CAS  PubMed  Google Scholar 

  41. Qi, X., Zhang, J., Yuan, H., Xu, Z., Li, Q., Niu, X., & Li, X. (2016). Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. International Journal of Biological Sciences, 12(7), 836.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Maumus, M., Jorgensen, C., & Noël, D. (2013). Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie, 95(12), 2229–2234.

    CAS  PubMed  Google Scholar 

  43. Fang, S., Xu, C., Zhang, Y., Xue, C., Yang, C., Bi, H., & Wang, Y. (2016). Umbilical cord-derived mesenchymal stem cell-derived exosomal micrornas suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Translational Medicine, 5(10), 1425–1439.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, M., Yuan, S., Li, S., Li, L., Liu, M., & Wan, S. (2019). The exosome-derived biomarker in atherosclerosis and its clinical application. Journal of Cardiovascular Translational Research, 12(1), 68–74.

    PubMed  Google Scholar 

  45. Yuan, M. J., Maghsoudi, T., & Wang, T. (2016). Exosomes mediate the intercellular communication after myocardial infarction. International Journal of Medical Sciences, 13(2), 113.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Belting, M., & Christianson, H. C. (2015). Role of exosomes and microvesicles in hypoxia-associated tumour development and cardiovascular disease. Journal of Internal Medicine, 278(3), 251–263.

    CAS  PubMed  Google Scholar 

  47. Lawson, C., Vicencio, J. M., Yellon, D. M., & Davidson, S. M. (2016). Microvesicles and exosomes: new players in metabolic and cardiovascular disease. Journal of Endocrinology, 228(2), R57–R71.

    PubMed  Google Scholar 

  48. Lee, M. J., Park, D. H., & Kang, J. H. (2016). Exosomes as the source of biomarkers of metabolic diseases. Annals of pediatric endocrinology & metabolism, 21(3), 119.

    Google Scholar 

  49. Hoefer, I. E., Steffens, S., Ala-Korpela, M., Bäck, M., Badimon, L., Bochaton-Piallat, M. L., & Evans, P. C. (2015). Novel methodologies for biomarker discovery in atherosclerosis. European Heart Journal, 36(39), 2635–2642.

    CAS  PubMed  Google Scholar 

  50. Nistal, J. F., Villar, A. V., García, R., & Hurlé, M. A. (2016). MicroRNA-133: biomarker and mediator of cardiovascular diseases. Biomarkers in Cardiovascular Disease, 285–317.

  51. Kuwabara, Y., Ono, K., Horie, T., Nishi, H., Nagao, K., Kinoshita, M., & Imai, M. (2011). Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation: Cardiovascular Genetics, 4(4), 446–454.

    CAS  Google Scholar 

  52. Wang, L., Lv, Y., Li, G., & Xiao, J. (2018). MicroRNAs in heart and circulation during physical exercise. Journal of Sport and Health Science, 7(4), 433–441.

    PubMed  PubMed Central  Google Scholar 

  53. van Empel, V. P., De Windt, L. J., & da Costa Martins, P. A. (2012). Circulating miRNAs: reflecting or affecting cardiovascular disease? Current Hypertension Reports, 14(6), 498–509.

    PubMed  Google Scholar 

  54. Shi, Q., & Yang, X. (2016). Circulating microRNA and long noncoding RNA as biomarkers of cardiovascular diseases. Journal of Cellular Physiology, 231(4), 751–755.

    CAS  PubMed  Google Scholar 

  55. de Gonzalo-Calvo, D., Dávalos, A., Fernández-Sanjurjo, M., Amado-Rodríguez, L., Díaz-Coto, S., Tomás-Zapico, C., & Pérez, A. B. (2018). Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise. International Journal of Cardiology, 264, 130–136.

    PubMed  Google Scholar 

  56. Zampetaki, A., & Mayr, M. (2017).  Circulating microRNAs as Novel Biomarkers in Cardiovascular Disease: Basic and Technical Principles. Non-coding RNAs in the Vasculature. Springer, Cham, 83–101.

  57. Liu, J., Sun, H., Wang, X., Yu, Q., Li, S., Yu, X., & Gong, W. (2014). Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. International Journal of Molecular Sciences, 15(1), 758–773.

    PubMed  PubMed Central  Google Scholar 

  58. Siasos, G., Tsigkou, V., & Tousoulis, D. (2018). Circulating microRNAs as novel biomarkers in heart failure. Hellenic journal of cardiology: HJC = Hellenike kardiologike epitheorese, 59(4), 215.

    PubMed  Google Scholar 

  59. Garrido, V., Mendoza-Torres, E., Riquelme, A., Díaz, J., Pizarro, A., Bustamante, M., & L Allende, M. (2017). Novel therapies targeting cardioprotection and regeneration. Current Pharmaceutical Design, 23(18), 2592–2615.

    CAS  PubMed  Google Scholar 

  60. Fernandez-García, C. E., Burillo, E., Lindholt, J. S., Martinez-Lopez, D., Pilely, K., Mazzeo, C., & Martin-Ventura, J. L. (2017). Association of ficolin-3 with abdominal aortic aneurysm presence and progression. Journal of Thrombosis and Haemostasis, 15(3), 575–585.

    PubMed  Google Scholar 

  61. Sahoo, S., Mathiyalagan, P., & Hajjar, R. J. (2017). Pericardial fluid exosomes: a new material to treat cardiovascular disease. Molecular Therapy, 25(3), 568–569.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Prathipati, P., Nandi, S. S., & Mishra, P. K. (2017). Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy. Stem Cell Reviews and Reports, 13(1), 79–91.

    CAS  PubMed  Google Scholar 

  63. Sahoo, S., & Losordo, D. W. (2014). Exosomes and cardiac repair after myocardial infarction. Circulation Research, 114(2), 333–344.

    CAS  PubMed  Google Scholar 

  64. Li, N., Rochette, L., Wu, Y., & Rosenblatt-Velin, N. (2019). New insights into the role of exosomes in the heart after myocardial infarction. Journal of Cardiovascular Translational Research, 12(1), 18–27.

    CAS  PubMed  Google Scholar 

  65. Pan, W., Zhu, Y., Meng, X., Zhang, C., Yang, Y., & Bei, Y. (2019). Immunomodulation by exosomes in myocardial infarction. Journal of Cardiovascular Translational Research, 12(1), 28–36.

    PubMed  Google Scholar 

  66. Ailawadi, S., Wang, X., Gu, H., & Fan, G. C. (2015). Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1852(1), 1–11.

    CAS  Google Scholar 

  67. Barile, L., Moccetti, T., Marbán, E., & Vassalli, G. (2016). Roles of exosomes in cardioprotection. European Heart Journal, 38(18), 1372–1379.

    Google Scholar 

  68. Vandergriff, A., Huang, K., Shen, D., Hu, S., Hensley, M. T., Caranasos, T. G., & Cheng, K. (2018). Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics, 8(7), 1869.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Feng, Y., Huang, W., Wani, M., Yu, X., & Ashraf, M. (2014). Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One, 9(2), e88685.

    PubMed  PubMed Central  Google Scholar 

  71. Yu, B., Gong, M., Wang, Y., Millard, R. W., Pasha, Z., Yang, Y., & Xu, M. (2013). Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One, 8(8), e73304.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, L., Jin, X., Hu, C.-F., Li, R., & Shen, C.-X. (2017). Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cellular Physiology and Biochemistry, 43(1), 52–68.

    CAS  PubMed  Google Scholar 

  73. Xu, J. Y., Chen, G. H., & Yang, Y. J. (2017). Exosomes: a rising star in failing hearts. Frontiers in Physiology, 8, 494.

    PubMed  PubMed Central  Google Scholar 

  74. Lopatina, T., Bruno, S., Tetta, C., Kalinina, N., Porta, M., & Camussi, G. (2014). Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Communication and Signaling, 12(1), 26.

    PubMed  Google Scholar 

  75. Ju, Z., Ma, J., Wang, C., Yu, J., Qiao, Y., & Hei, F. (2017). Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells. Inflammation, 40(2), 486–496.

    CAS  PubMed  Google Scholar 

  76. Makridakis, M., Roubelakis, M. G., & Vlahou, A. (2013). Stem cells: insights into the secretome. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1834(11), 2380–2384.

    CAS  Google Scholar 

  77. Qi, J., Qiao, Y., Wang, P., Li, S., Zhao, W., & Gao, C. (2012). microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-kB1 in murine macrophages. FEBS Letters, 586(8), 1201–1207.

    CAS  PubMed  Google Scholar 

  78. Su, S. A., Xie, Y., Fu, Z., Wang, Y., Wang, J. A., & Xiang, M. (2017). Emerging role of exosome-mediated intercellular communication in vascular remodeling. Oncotarget, 8(15), 25700.

    PubMed  PubMed Central  Google Scholar 

  79. Yamaguchi, T., Izumi, Y., Nakamura, Y., Yamazaki, T., Shiota, M., Sano, S., & Yoshiyama, M. (2015). Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction. International Journal of Cardiology, 178, 239–246.

    PubMed  Google Scholar 

  80. Rojas, S. V., Kensah, G., Rotaermel, A., Baraki, H., Kutschka, I., Zweigerdt, R., & Martens, A. (2017). Transplantation of purified iPSC-derived cardiomyocytes in myocardial infarction. PLoS One, 12(5), e0173222.

    PubMed  PubMed Central  Google Scholar 

  81. Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N., & Lim, S. K. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10(3), 301–312.

    CAS  PubMed  Google Scholar 

  82. Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., Noiseux, N., & Dzau, V. (2007). Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences, 104(5), 1643–1648.

    CAS  Google Scholar 

  83. Gazdhar, A., Grad, I., Tamò, L., Gugger, M., Feki, A., & Geiser, T. (2014). The secretome of induced pluripotent stem cells reduces lung fibrosis in part by hepatocyte growth factor. Stem Cell Research & Therapy, 5(6), 123.

    Google Scholar 

  84. Hu, G. W., Li, Q., Niu, X., Hu, B., Liu, J., Zhou, S. M., & Deng, Z. F. (2015). Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Research & Therapy, 6(1), 10.

    Google Scholar 

  85. Bian, S., Zhang, L., Duan, L., Wang, X., Min, Y., & Yu, H. (2014). Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Journal of Molecular Medicine, 92(4), 387–397.

    CAS  PubMed  Google Scholar 

  86. Vrijsen, K. R., Maring, J. A., Chamuleau, S. A., Verhage, V., Mol, E. A., Deddens, J. C., & Doevendans, P. A. (2016). Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Advanced Healthcare Materials, 5(19), 2555–2565.

    CAS  PubMed  Google Scholar 

  87. Lin, B. L., Chen, J. F., Qiu, W. H., Wang, K. W., Xie, D. Y., Chen, X. Y., & Weng, W. Z. (2017). Allogeneic bone marrow–derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: a randomized controlled trial. Hepatology, 66(1), 209–219.

    CAS  PubMed  Google Scholar 

  88. Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S. K., Choo, A., Chen, T. S., & Pasterkamp, G. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–222.

    CAS  PubMed  Google Scholar 

  89. Kalani, A., Chaturvedi, P., Kamat, P. K., Maldonado, C., Bauer, P., Joshua, I. G., & Tyagi, N. (2016). Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. The International Journal of Biochemistry & Cell Biology, 79, 360–369.

    CAS  Google Scholar 

  90. Xu, Z., McElhanon, K. E., Beck, E. X., & Weisleder, N. (2018). A murine model of myocardial ischemia–reperfusion injury. In Traumatic and ischemic injury, 1717, pp. 145–153.

  91. Pu, C. M., Liu, C. W., Liang, C. J., Yen, Y. H., Chen, S. H., Jiang-Shieh, Y. F., & Chen, Y. L. (2017). Adipose-derived stem cells protect skin flaps against ischemia/reperfusion injury via IL-6 expression. Journal of Investigative Dermatology, 137(6), 1353–1362.

    CAS  PubMed  Google Scholar 

  92. Lai, R. C., Arslan, F., Tan, S. S., Tan, B., Choo, A., Lee, M. M., & Tanavde, V. (2010). Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles. Journal of Molecular and Cellular Cardiology, 48(6), 1215–1224.

    CAS  PubMed  Google Scholar 

  93. Timmers, L., Lim, S. K., Arslan, F., Armstrong, J. S., Hoefer, I. E., Doevendans, P. A., & Pasterkamp, G. (2008). Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Research, 1(2), 129–137.

    Google Scholar 

  94. Rezaie, J., Rahbarghazi, R., Pezeshki, M., Mazhar, M., & Tokac, M. (2019). Cardioprotective role of extracellular vesicles: a highlight on exosome beneficial effects in cardiovascular diseases. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.28894.

Download references

Funding

This study was funded by the Ningbo Health Branding Subject Fund (PPXK2018-01), Ningbo medical science and technology project (2016Z01), Zhejiang Provincial Public Service and Application Research Foundation, China (LGF20H250001), and Ningbo HwaMei research fund (2019HMZD09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghua Ye.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study does not involve human participants or animals.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, N., Zhang, Y., Zhang, S. et al. Exosomes: Cell-Free Therapy for Cardiovascular Diseases. J. of Cardiovasc. Trans. Res. 13, 713–721 (2020). https://doi.org/10.1007/s12265-020-09966-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-09966-7

Keywords

Navigation