Abstract
Cardiovascular diseases (CVDs) are an important cause of death and disease worldwide. Because injured cardiac tissue cannot be repaired itself, it is urgent to develop other alternate therapies. Stem cells can be differentiated into cardiomyocytes, endothelial cells, and vascular smooth muscle cells for the treatment of CVDs. Therefore, cell therapy has recently been considered a viable treatment option that can significantly improve cardiac function. Nonetheless, implanted stem cells rarely survive in the recipient heart, suggesting that the benefits of stem cell therapy may involve other mechanisms. Exosomes derived from stem cells have a myocardial protection function after myocardial injury, and may be a promising and effective therapy for CVDs. Here, we discuss the application and mechanism of exosomes derived from stem cells in the diagnosis and treatment of CVDs and provide evidence for the application of exosomes in CVDs.
Similar content being viewed by others
Abbreviations
- AMI:
-
Acute myocardial infarction
- CVDs:
-
Cardiovascular diseases
- CPCs:
-
Cardiac progenitor cells
- ESCs:
-
Embryonic stem cells
- EVs:
-
Extracellular vesicles
- HUVECs:
-
Human umbilical vein endothelial cells
- iPSCs:
-
Induced pluripotent stem cells
- MSCs:
-
Mesenchymal stem cell
- miRNAs, miRs:
-
MicroRNAs
- mRNAs:
-
Messenger RNAs
- lncRNAs:
-
Long noncoding RNAs
References
Silvestre, J. S. (2016). Stem cell therapy for cardiovascular diseases. Artery Research, 16, 45–45.
Terashvili, M., & Bosnjak, Z. J. (2019). Stem cell therapies in cardiovascular disease. Journal of Cardiothoracic and Vascular Anesthesia, 33(1), 209–222.
Bagno, L., Hatzistergos, K. E., Balkan, W., & Hare, J. M. (2018). Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Molecular Therapy, 26(7), 1610–1623.
Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., Krishnamurthy, P., & Ramirez, V. (2015). Embryonic stem cell–derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117(1), 52–64.
Musunuru, K., Sheikh, F., Gupta, R. M., Houser, S. R., Maher, K. O., Milan, D. J., & Wu, J. C. (2018). Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the American Heart Association. Circulation: Genomic and Precision Medicine, 11(1), e000043.
Maki, K. C., & Dicklin, M. R. (2018). Assessing cardiovascular disease risk and responses to preventive therapies in clinical practice. Current Atherosclerosis Reports, 20(5), 23.
Ni, J., Sun, Y., & Liu, Z. (2019). The potential of stem cells and stem cell-derived exosomes in treating cardiovascular diseases. Journal of Cardiovascular Translational Research, 12(1), 51–61.
Yuan, Y., Du, W., Liu, J., Ma, W., Zhang, L., Du, Z., & Cai, B. (2018). Stem cell-derived exosome in cardiovascular diseases: macro roles of micro particles. Frontiers in pharmacology, 9.
Lazar, E., Benedek, T., Korodi, S., Rat, N., Lo, J., & Benedek, I. (2018). Stem cell-derived exosomes-an emerging tool for myocardial regeneration. World journal of stem cells, 10(8), 106.
Wang, J., Zhao, C., & Xiao, J. (2019). Exosomes in cardiovascular diseases and treatment: experimental and clinical aspects. Journal of Cardiovascular Translational Research, 12, 1–2.
Gartz, M., & Strande, J. L. (2018). Examining the paracrine effects of exosomes in cardiovascular disease and repair. Journal of the American Heart Association, 7(11), e007954.
Poe, A. J., & Knowlton, A. A. (2018). Exosomes and cardiovascular cell–cell communication. Essays in Biochemistry, 62(2), 193–204.
Théry, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nature Reviews Immunology, 2(8), 569.
Vlassov, A. V., Magdaleno, S., Setterquist, R., & Conrad, R. (2012). Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(7), 940–948.
Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75(2), 193–208.
Barile, L., & Vassalli, G. (2017). Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacology & Therapeutics, 174, 63–78.
Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., & Mi, S. (2015). Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13(1), 17–24.
Zhang, Y., Liu, Y., Liu, H., & Tang, W. H. (2019). Exosomes: biogenesis, biologic function and clinical potential. Cell & Bioscience, 9(1), 19.
Parizadeh, S. M., Jafarzadeh-Esfehani, R., Ghandehari, M., Parizadeh, S. M., Hassanian, S. M., Rezayi, M., & Avan, A. (2018). Circulating exosomes as potential biomarkers in cardiovascular disease. Current Pharmaceutical Design, 24(37), 4436–4444.
Brahim, A. G. E., Cheng, K., & Marbán, E. (2014). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2(5), 606–619.
Xitong, D., & Xiaorong, Z. (2016). Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene, 575(2), 377–384.
Das, S., & Halushka, M. K. (2015). Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovascular Pathology, 24(4), 199–206.
Zhang, Y., Hu, Y. W., Zheng, L., & Wang, Q. (2017). Characteristics and roles of exosomes in cardiovascular disease. DNA and Cell Biology, 36(3), 202–211.
Khan, M., & Kishore, R. (2017). Stem cell exosomes: cell-free therapy for organ repair. Methods in Molecular Biology, 1553, 315–321.
Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., & Ingwall, J. S. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Medicine, 11(4), 367.
Mirotsou, M., Jayawardena, T. M., Schmeckpeper, J., Gnecchi, M., & Dzau, V. J. (2011). Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. Journal of Molecular and Cellular Cardiology, 50(2), 280–289.
Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 27, 19–23.
Ong, S. G., & Wu, J. C. (2015). Exosomes as potential alternatives to stem cell therapy in mediating cardiac regeneration. Circulation Research, 117, 7–9.
Menasché, P., Vanneaux, V., Hagège, A., Bel, A., Cholley, B., Parouchev, A., & Agbulut, O. (2018). Transplantation of human embryonic stem cell–derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. Journal of the American College of Cardiology, 71(4), 429–438.
Lynch, A. T., Mazzotta, S., & Hoppler, S. (2018). Cardiomyocyte differentiation from mouse embryonic stem cells. In Experimental models of cardiovascular diseases. Humana Press, New York, NY 55-66.
Song, Y. H., Shao, L., Zhang, Y., Zhou, J., Liu, B., Pan, X., & Li, Y. (2017). Exosomes derived from embryonic stem cells as potential treatment for cardiovascular diseases. Advances in Experimental Medicine & Biology, 998, 187–206.
Vaskova, E., Tada, Y., von Bornstaedt, D., Woo, Y., & Yang, P. (2018). Pleiotropic effects of the Exosomes from IPSC-derivatives in restoring injured myocardium. Journal of the American College of Cardiology, 71(11 Supplement), A80.
Bobis-Wozowicz, S., Kmiotek, K., Sekula, M., Kedracka-Krok, S., Kamycka, E., Adamiak, M., & Kolcz, J. (2015). Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior. Stem Cells, 33(9), 2748–2761.
Wang, Y., Zhang, L., Li, Y., Chen, L., Wang, X., Guo, W., & Liu, Y. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology, 192, 61–69.
Yang, P. C. (2018). Induced pluripotent stem cell (iPSC)–derived exosomes for precision medicine in heart failure. Circulation Research, 122(5), 661–663.
Zhou, J., Ghoroghi, S., Benito-Martin, A., Wu, H., Unachukwu, U. J., Einbond, L. S., & Redenti, S. (2016). Characterization of induced pluripotent stem cell microvesicle genesis, morphology and pluripotent content. Scientific Reports, 6, 19743.
Huang, L., Ma, W., Ma, Y., Feng, D., Chen, H., & Cai, B. (2015). Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? International Journal of Biological Sciences, 11(2), 238.
Suzuki, E., Fujita, D., Takahashi, M., Oba, S., & Nishimatsu, H. (2017). Therapeutic effects of mesenchymal stem cell-derived exosomes in cardiovascular disease. In Exosomes in cardiovascular diseases, 998, 179–185.
Ju, C., Shen, Y., Ma, G., Liu, Y., Cai, J., Kim, I. M., & Tang, Y. (2018). Transplantation of cardiac mesenchymal stem cell-derived exosomes promotes repair in ischemic myocardium. Journal of Cardiovascular Translational Research, 11(5), 420–428.
Teng, X., Chen, L., Chen, W., Yang, J., Yang, Z., & Shen, Z. (2015). Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cellular Physiology and Biochemistry, 37(6), 2415–2424.
Qi, X., Zhang, J., Yuan, H., Xu, Z., Li, Q., Niu, X., & Li, X. (2016). Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. International Journal of Biological Sciences, 12(7), 836.
Maumus, M., Jorgensen, C., & Noël, D. (2013). Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie, 95(12), 2229–2234.
Fang, S., Xu, C., Zhang, Y., Xue, C., Yang, C., Bi, H., & Wang, Y. (2016). Umbilical cord-derived mesenchymal stem cell-derived exosomal micrornas suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Translational Medicine, 5(10), 1425–1439.
Lu, M., Yuan, S., Li, S., Li, L., Liu, M., & Wan, S. (2019). The exosome-derived biomarker in atherosclerosis and its clinical application. Journal of Cardiovascular Translational Research, 12(1), 68–74.
Yuan, M. J., Maghsoudi, T., & Wang, T. (2016). Exosomes mediate the intercellular communication after myocardial infarction. International Journal of Medical Sciences, 13(2), 113.
Belting, M., & Christianson, H. C. (2015). Role of exosomes and microvesicles in hypoxia-associated tumour development and cardiovascular disease. Journal of Internal Medicine, 278(3), 251–263.
Lawson, C., Vicencio, J. M., Yellon, D. M., & Davidson, S. M. (2016). Microvesicles and exosomes: new players in metabolic and cardiovascular disease. Journal of Endocrinology, 228(2), R57–R71.
Lee, M. J., Park, D. H., & Kang, J. H. (2016). Exosomes as the source of biomarkers of metabolic diseases. Annals of pediatric endocrinology & metabolism, 21(3), 119.
Hoefer, I. E., Steffens, S., Ala-Korpela, M., Bäck, M., Badimon, L., Bochaton-Piallat, M. L., & Evans, P. C. (2015). Novel methodologies for biomarker discovery in atherosclerosis. European Heart Journal, 36(39), 2635–2642.
Nistal, J. F., Villar, A. V., García, R., & Hurlé, M. A. (2016). MicroRNA-133: biomarker and mediator of cardiovascular diseases. Biomarkers in Cardiovascular Disease, 285–317.
Kuwabara, Y., Ono, K., Horie, T., Nishi, H., Nagao, K., Kinoshita, M., & Imai, M. (2011). Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation: Cardiovascular Genetics, 4(4), 446–454.
Wang, L., Lv, Y., Li, G., & Xiao, J. (2018). MicroRNAs in heart and circulation during physical exercise. Journal of Sport and Health Science, 7(4), 433–441.
van Empel, V. P., De Windt, L. J., & da Costa Martins, P. A. (2012). Circulating miRNAs: reflecting or affecting cardiovascular disease? Current Hypertension Reports, 14(6), 498–509.
Shi, Q., & Yang, X. (2016). Circulating microRNA and long noncoding RNA as biomarkers of cardiovascular diseases. Journal of Cellular Physiology, 231(4), 751–755.
de Gonzalo-Calvo, D., Dávalos, A., Fernández-Sanjurjo, M., Amado-Rodríguez, L., Díaz-Coto, S., Tomás-Zapico, C., & Pérez, A. B. (2018). Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise. International Journal of Cardiology, 264, 130–136.
Zampetaki, A., & Mayr, M. (2017). Circulating microRNAs as Novel Biomarkers in Cardiovascular Disease: Basic and Technical Principles. Non-coding RNAs in the Vasculature. Springer, Cham, 83–101.
Liu, J., Sun, H., Wang, X., Yu, Q., Li, S., Yu, X., & Gong, W. (2014). Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. International Journal of Molecular Sciences, 15(1), 758–773.
Siasos, G., Tsigkou, V., & Tousoulis, D. (2018). Circulating microRNAs as novel biomarkers in heart failure. Hellenic journal of cardiology: HJC = Hellenike kardiologike epitheorese, 59(4), 215.
Garrido, V., Mendoza-Torres, E., Riquelme, A., Díaz, J., Pizarro, A., Bustamante, M., & L Allende, M. (2017). Novel therapies targeting cardioprotection and regeneration. Current Pharmaceutical Design, 23(18), 2592–2615.
Fernandez-García, C. E., Burillo, E., Lindholt, J. S., Martinez-Lopez, D., Pilely, K., Mazzeo, C., & Martin-Ventura, J. L. (2017). Association of ficolin-3 with abdominal aortic aneurysm presence and progression. Journal of Thrombosis and Haemostasis, 15(3), 575–585.
Sahoo, S., Mathiyalagan, P., & Hajjar, R. J. (2017). Pericardial fluid exosomes: a new material to treat cardiovascular disease. Molecular Therapy, 25(3), 568–569.
Prathipati, P., Nandi, S. S., & Mishra, P. K. (2017). Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy. Stem Cell Reviews and Reports, 13(1), 79–91.
Sahoo, S., & Losordo, D. W. (2014). Exosomes and cardiac repair after myocardial infarction. Circulation Research, 114(2), 333–344.
Li, N., Rochette, L., Wu, Y., & Rosenblatt-Velin, N. (2019). New insights into the role of exosomes in the heart after myocardial infarction. Journal of Cardiovascular Translational Research, 12(1), 18–27.
Pan, W., Zhu, Y., Meng, X., Zhang, C., Yang, Y., & Bei, Y. (2019). Immunomodulation by exosomes in myocardial infarction. Journal of Cardiovascular Translational Research, 12(1), 28–36.
Ailawadi, S., Wang, X., Gu, H., & Fan, G. C. (2015). Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1852(1), 1–11.
Barile, L., Moccetti, T., Marbán, E., & Vassalli, G. (2016). Roles of exosomes in cardioprotection. European Heart Journal, 38(18), 1372–1379.
Vandergriff, A., Huang, K., Shen, D., Hu, S., Hensley, M. T., Caranasos, T. G., & Cheng, K. (2018). Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics, 8(7), 1869.
Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.
Feng, Y., Huang, W., Wani, M., Yu, X., & Ashraf, M. (2014). Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One, 9(2), e88685.
Yu, B., Gong, M., Wang, Y., Millard, R. W., Pasha, Z., Yang, Y., & Xu, M. (2013). Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One, 8(8), e73304.
Liu, L., Jin, X., Hu, C.-F., Li, R., & Shen, C.-X. (2017). Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cellular Physiology and Biochemistry, 43(1), 52–68.
Xu, J. Y., Chen, G. H., & Yang, Y. J. (2017). Exosomes: a rising star in failing hearts. Frontiers in Physiology, 8, 494.
Lopatina, T., Bruno, S., Tetta, C., Kalinina, N., Porta, M., & Camussi, G. (2014). Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Communication and Signaling, 12(1), 26.
Ju, Z., Ma, J., Wang, C., Yu, J., Qiao, Y., & Hei, F. (2017). Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells. Inflammation, 40(2), 486–496.
Makridakis, M., Roubelakis, M. G., & Vlahou, A. (2013). Stem cells: insights into the secretome. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1834(11), 2380–2384.
Qi, J., Qiao, Y., Wang, P., Li, S., Zhao, W., & Gao, C. (2012). microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-kB1 in murine macrophages. FEBS Letters, 586(8), 1201–1207.
Su, S. A., Xie, Y., Fu, Z., Wang, Y., Wang, J. A., & Xiang, M. (2017). Emerging role of exosome-mediated intercellular communication in vascular remodeling. Oncotarget, 8(15), 25700.
Yamaguchi, T., Izumi, Y., Nakamura, Y., Yamazaki, T., Shiota, M., Sano, S., & Yoshiyama, M. (2015). Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction. International Journal of Cardiology, 178, 239–246.
Rojas, S. V., Kensah, G., Rotaermel, A., Baraki, H., Kutschka, I., Zweigerdt, R., & Martens, A. (2017). Transplantation of purified iPSC-derived cardiomyocytes in myocardial infarction. PLoS One, 12(5), e0173222.
Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N., & Lim, S. K. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10(3), 301–312.
Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., Noiseux, N., & Dzau, V. (2007). Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences, 104(5), 1643–1648.
Gazdhar, A., Grad, I., Tamò, L., Gugger, M., Feki, A., & Geiser, T. (2014). The secretome of induced pluripotent stem cells reduces lung fibrosis in part by hepatocyte growth factor. Stem Cell Research & Therapy, 5(6), 123.
Hu, G. W., Li, Q., Niu, X., Hu, B., Liu, J., Zhou, S. M., & Deng, Z. F. (2015). Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Research & Therapy, 6(1), 10.
Bian, S., Zhang, L., Duan, L., Wang, X., Min, Y., & Yu, H. (2014). Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Journal of Molecular Medicine, 92(4), 387–397.
Vrijsen, K. R., Maring, J. A., Chamuleau, S. A., Verhage, V., Mol, E. A., Deddens, J. C., & Doevendans, P. A. (2016). Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Advanced Healthcare Materials, 5(19), 2555–2565.
Lin, B. L., Chen, J. F., Qiu, W. H., Wang, K. W., Xie, D. Y., Chen, X. Y., & Weng, W. Z. (2017). Allogeneic bone marrow–derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: a randomized controlled trial. Hepatology, 66(1), 209–219.
Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S. K., Choo, A., Chen, T. S., & Pasterkamp, G. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–222.
Kalani, A., Chaturvedi, P., Kamat, P. K., Maldonado, C., Bauer, P., Joshua, I. G., & Tyagi, N. (2016). Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. The International Journal of Biochemistry & Cell Biology, 79, 360–369.
Xu, Z., McElhanon, K. E., Beck, E. X., & Weisleder, N. (2018). A murine model of myocardial ischemia–reperfusion injury. In Traumatic and ischemic injury, 1717, pp. 145–153.
Pu, C. M., Liu, C. W., Liang, C. J., Yen, Y. H., Chen, S. H., Jiang-Shieh, Y. F., & Chen, Y. L. (2017). Adipose-derived stem cells protect skin flaps against ischemia/reperfusion injury via IL-6 expression. Journal of Investigative Dermatology, 137(6), 1353–1362.
Lai, R. C., Arslan, F., Tan, S. S., Tan, B., Choo, A., Lee, M. M., & Tanavde, V. (2010). Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles. Journal of Molecular and Cellular Cardiology, 48(6), 1215–1224.
Timmers, L., Lim, S. K., Arslan, F., Armstrong, J. S., Hoefer, I. E., Doevendans, P. A., & Pasterkamp, G. (2008). Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Research, 1(2), 129–137.
Rezaie, J., Rahbarghazi, R., Pezeshki, M., Mazhar, M., & Tokac, M. (2019). Cardioprotective role of extracellular vesicles: a highlight on exosome beneficial effects in cardiovascular diseases. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.28894.
Funding
This study was funded by the Ningbo Health Branding Subject Fund (PPXK2018-01), Ningbo medical science and technology project (2016Z01), Zhejiang Provincial Public Service and Application Research Foundation, China (LGF20H250001), and Ningbo HwaMei research fund (2019HMZD09).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Ethical Approval
This study does not involve human participants or animals.
Additional information
Associate Editor Junjie Xiao oversaw the review of this article
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
He, N., Zhang, Y., Zhang, S. et al. Exosomes: Cell-Free Therapy for Cardiovascular Diseases. J. of Cardiovasc. Trans. Res. 13, 713–721 (2020). https://doi.org/10.1007/s12265-020-09966-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12265-020-09966-7