[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Computing paradigms for smart farming in the era of drones: a systematic review

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

In the current era of agricultural robotization, it is necessary to use a suitable automated data collection system for constant plant, animal, and machine monitoring. In this context, cloud computing (CC) is a well-established paradigm for building service-centric farming applications. However, the huge amount of data has put an important burden on data centers and network bandwidth and pointed out issues that cloud-based applications face such as large latency, bottlenecks because of central processing, compromised security, and lack of offline processing. Fog computing (FC), edge computing (EC), and mobile edge computing (MEC) (or flying edge computing FEC) are gaining exponential attention and becoming attractive solutions to bring CC processes within reach of users and address computation-intensive offloading and latency issues. These paradigms from cloud to mobile edge computing are already forming a unique ecosystem with different architectures, storage, and processing capabilities. The heterogeneity of this ecosystem comes with certain limitations and challenges. This paper carries out a systematic review of the latest high-quality literature and aims to identify similarities, differences, and the main use cases in the mentioned computing paradigms, particularly when using drones. Our expectation from this work is to become a good reference for researchers and help them address hot topics and challenging issues related to this scope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cisco GCI (2019) Redefine connectivity by building a network to support the Internet of Things (white paper)

  2. Polaris Market Research (2022) Agriculture drones market research report

  3. Dhifaoui S, Houaidia C, Saïdane LA (2022) Cloud-fog-edge computing in smart agriculture in the era of drones: a systematic survey. In: 2022 IEEE 11th IFIP international conference on performance evaluation and modeling in wireless and wired networks (PEMWN) pp 1–6

  4. Gartner Inc (2017) Gartner says almost 3 million personal and commercial drones will be shipped in 2017

  5. Ketu S, Mishra PK (2021) Cloud, fog and mist computing in IoT: an indication of emerging opportunities. IETE Technical Review, Opportunities

  6. Amiri-Zarandi M, Hazrati Fard M, Yousefinaghani S, Kaviani M, Dara R (2022) A platform approach to smart farm information processing. Agriculture 12(838):1–18

    Google Scholar 

  7. Ammad Uddin M, Ayaz M, Aggoune E-HM, Mansour A, Le Jeune D (2019) Affordable broad agile farming system for rural and remote area. IEEE Access 7:127098–127116

    Article  Google Scholar 

  8. Rejeb A, Abdollahi A, Rejeb K, Treiblmaier H (2022) Drones in agriculture: a review and bibliometric analysis. Comput Electron Agric 198(C)

  9. Maddikunta PKR et al. (2021) Unmanned aerial vehicles in smart agriculture: applications, requirements, and challenges. In: IEEE sensors journal, vol 21, no 16, pp 17608–17619

  10. Gao Z, Zhu J, Huang H, Yang Y, Tan X (2021) Ant colony optimization for UAV-based intelligent pesticide irrigation system. 2021 IEEE 24th international conference on computer supported cooperative work in design (CSCWD). Dalian, China, pp 720–726

    Chapter  Google Scholar 

  11. Valente J, Sari B, Kooistra L, Kramer H, Mücher S (2020) Automated crop plant counting from very high-resolution aerial imagery. Precis Agric 21(6):1366–1384

    Article  Google Scholar 

  12. Sajid J, Hayawi K, Malik AW, Anwar Z, Trabelsi Z (2023) A fog computing framework for intrusion detection of energy-based attacks on UAV-assisted smart farming. Appl Sci 13(6):3857

    Article  Google Scholar 

  13. Uddin MA, Mansour A, Le Jeune D, Ayaz M, Aggoune EHM (2018) UAV-assisted dynamic clustering of wireless sensor networks for crop health monitoring. Sensors 18(2):555

    Article  Google Scholar 

  14. Sakthi U, Rose JD (2020) Smart agricultural knowledge discovery system using IoT technology and fog computing. In: 2020 third international conference on smart systems and inventive technology (ICSSIT), pp 48–53

  15. Snyder H (2019) Literature review as a research methodology: an overview and guidelines. J Bus Res 104:333–339

    Article  Google Scholar 

  16. AmmadUddin M, Ayaz M, Mansour A, Aggoune E, Sharif Z (2021) Razzak I () Cloud-connected flying edge computing for smart agriculture. Peer-to-Peer Netw Appl 14:3405–3415

    Article  Google Scholar 

  17. Kar B, Yahya W, Lin Y, Ali A (2023) Offloading using traditional optimization and machine learning in federated cloud-edge-fog systems: a survey. IEEE Commun Surv Tutorials 25:1199–1226

    Article  Google Scholar 

  18. Kalyani Y, Collier R (2021) A systematic survey on the role of cloud, fog, and edge computing combination in smart agriculture. Sensors 21(17):5922

    Article  Google Scholar 

  19. Navarro E, Costa N, Pereira A (2020) A systematic review of IoT solutions for smart farming. Sensors 20(15):4231

    Article  Google Scholar 

  20. Idoje G, Dagiuklas T, Iqbal M (2021) Survey for smart farming technologies: challenges and issues. Comput Electr Eng 92:107104

    Article  Google Scholar 

  21. Boursianis AD, Papadopoulou M, Diamantoulakis PD, Liopa-Tsakalidi A, Barouchas P, Salahas G, Karagiannidis G, Wan S, Goudos SK (2020) Internet of Things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: a comprehensive review. Internet Things 18

  22. Yazid Y, Ez-Zazi I, Guerrero-González A, El Oualkadi A, Arioua M (2021) UAV-enabled mobile edge-computing for IoT based on AI: a comprehensive review. Drones 5(4):148

    Article  Google Scholar 

  23. Bonomi F, Milito R, Zhu J, Addepalli S (2021) Fog computing and its role in the Internet of Things. In: Proceedings of the first edition of the MCC workshop on mobile cloud computing, Helsinki, Finland, August 2012, pp 13–16

  24. Alsamhi SH, Shvetsov AV, Kumar S, Shvetsova SV, Alhartomi MM, Hawbani A, Rajput NS, Srivastava S, Saif A, Nyangaresi VO (2022) UAV computing-assisted search and rescue mission framework for disaster and harsh environment mitigation. Drones 6(7):154

    Article  Google Scholar 

  25. Liu J, Xiong K, Ng DWK, Fan P, Zhong Z, Letaief KB (2020) Max-min energy balance in wireless-powered hierarchical fog-cloud computing networks. IEEE Trans Wirel Commun 19(11):7064–7080

    Article  Google Scholar 

  26. Popescu D, Stoican F, Stamatescu G, Ichim L, Dragana C (2020) Advanced UAV-WSN system for intelligent monitoring in precision agriculture. Sensors 20(3):817

    Article  Google Scholar 

  27. Qayyum T, Trabelsi Z, Malik A, Hayawi K (2022) Trajectory design for UAV-based data collection using clustering model in smart farming. Sensors 22(1):37

    Article  Google Scholar 

  28. Li X, Ma Z, Zheng J, Liu Y, Zhu L, Zhou N (2020) An effective edge-assisted data collection approach for critical events in the SDWSN-based Agricultural Internet of Things. Electronics 9(6):907

    Article  Google Scholar 

  29. Ratnakumari K, Koteswari S (2020) Design and implementation of innovative IoT based smart agriculture management system for efficient crop growth. J Eng Sci 11(7):607–616

    Google Scholar 

  30. Johri A, Prakash R, Vidyarthi A, Chamoli V, Bhardwaj S (2021) IoT-based system to measure soil moisture using soil moisture sensor, GPS data logging and cloud storage. In: International conference on innovative computing and communications, Singapore, pp 679–688

  31. Alsamhi SH, Almalki FA, AL-Dois H, Shvetsov AV, Ansari MS, Hawbani A, Gupta SK, Lee B (2021) Multi-drone edge intelligence and SAR smart wearable devices for emergency communication. Wirel Commun Mob Comput 21:1–12

  32. Schroeder NM, Panebianco A, Musso RG, Carmanchahi P (2020) An experimental approach to evaluate the potential of drones in terrestrial mammal research: a gregarious ungulate as a study model. Roy Soc Open Sci 7(1)

  33. Siegfried J, Adams CB, Rajan N, Hague S, Schnell R, Hardin R (2023) Combining a cotton ‘Boll Area Index’ with in-season unmanned aerial multispectral and thermal imagery for yield estimation. Field Crop Res 291

  34. Huang H, Savkin AV, Ding M, Kaafar MA (2019) Optimized deployment of drone base station to improve user experience in cellular networks. J Netw Comput Appl 144

  35. Debdas S, Mohanty S, Biswas B, Chhangani A, Samanta S, Chakraborty S (2021) IoT based fog and cloud analytics in smart dairy farming. In: International conference in advances in power, signal, and information technology (APSIT), pp 1–6

  36. Wan S, Zhao K, Lu Z, Li J, Lu T, Wang H (2022) A modularized IoT monitoring system with edge-computing for aquaponics. Sensors 22(23):9260

    Article  Google Scholar 

  37. Alam MN, Shufian A, Masum MAA, Noman AA (2021) Efficient smart water management system using IoT technology. In: 2021 international conference on automation, control and mechatronics for industry 4.0 (ACMI), pp 1–6

  38. Alanezi MA, Shahriar MS, Hasan MB, Ahmed S, Sha’aban YA, Bouchekara HREH (2022) Livestock management with unmanned aerial vehicles: a review. IEEE Access 10:45001–45028

    Article  Google Scholar 

  39. Froiz-Míguez I, Lopez-Iturri P, Fraga-Lamas P, Celaya-Echarri M, Blanco-Novoa Ó, Azpilicueta L, Falcone F, Fernández-Caramés TM (2020) Design, implementation, and empirical validation of an IoT smart irrigation system for fog computing applications based on loRa and loRaWAN sensor nodes. Sensors 20

  40. Tsipis A, Papamichail A, Koufoudakis G, Tsoumanis G, Polykalas SE, Oikonomou K (2020) Latency-adjustable cloud/fog computing architecture for time-sensitive environmental monitoring in olive groves. AgriEngineering 20(2):175–205

    Article  Google Scholar 

  41. Montoya-Munoz AI, Rendon OMC (2020) An approach based on fog computing for providing reliability in IoT data collection: a case study in a Colombian coffee smart farm. Appl Sci 10(24):8904

    Article  Google Scholar 

  42. Abunadi I, Rehman A, Haseeb K, Parra L, Lloret J (2022) Traffic-aware secured cooperative framework for IoT-based smart monitoring in precision agriculture. Sensors 22:6676

    Article  Google Scholar 

  43. da Costa Bezerra SF, Filho ASM, Delicato FC, da Rocha AR (2021) Processing complex events in fog-based Internet of Things systems for smart agriculture. Sensors 21:7226

    Article  Google Scholar 

  44. Ting L, Khan M, Sharma A, Ansari MD (2022) A secure framework for IoT-based smart climate agriculture system: toward blockchain and edge computing. J Intell Syst 31:221–236

    Google Scholar 

  45. Alonso RS, Sittón-Candanedo I, García Ó, Prieto J, Rodríguez-González S (2020) An intelligent edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Netw 98(1)

  46. Boubin J, Burley C, Han P, Li B, Porter B, Stewart C (2022) Marble: multi-agent reinforcement learning at the edge for digital agriculture. In: Proceedings of the 7th ACM/IEEE symposium on edge computing

  47. Boubin J, Zhang Z, Chumley J, Stewart C (2023) Adaptive deployment for autonomous agricultural UAV swarms. In: Proceedings of the 20th ACM conference on embedded networked sensor systems, association for computing machinery, New York, NY, USA, pp 1089–1095

  48. Ometov A, Molua OL, Komarov M, Nurmi J (2022) A survey of security in cloud, edge, and fog computing. Sensors (Basel, Switzerland) 22(3):927

    Article  Google Scholar 

  49. Behjati M, Mohd Noh AB, Alobaidy HAH, Zulkifley MA, Nordin R, Abdullah NF (2021) LoRa communications as an enabler for internet of drones towards large-scale livestock monitoring in rural farms. Sensors 21(5044)

  50. Al-Thani N, Albuainain A, Alnaimi F, Zorba N (2020) Drones for sheep livestock monitoring. In: Proceedings of the 2020 IEEE 20th mediterranean electrotechnical conference (MELECON), Palermo, Italy, pp 672–676

  51. Barbedo JGA, Koenigkan LV, Santos PM, Ribeiro ARB (2020) Counting cattle in UAV images-dealing with clustered animals and animal/background contrast changes. Sensors 20(7):2126

    Article  Google Scholar 

  52. Kerkech M, Hafiane A, Canals R (2020) Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Comput Electron Agric 174(105446)

  53. Apolo-Apolo OE, Martínez-Guanter J, Egea G, Raja P, Pérez-Ruiz M (2020) Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV. Eur J Agron 115(126030)

  54. Kalyani Y, Collier R (2021) A systematic survey on the role of cloud, fog, and edge computing combination in smart agriculture. Sensors 21(17):5922

    Article  Google Scholar 

  55. Nguyen A, Pamuklu T, Syed A, Kennedy W, Erol Kantarci M (2023) To risk or not to risk: learning with risk quantification for IoT task offloading in UAVs. arXiv:2302.07399

  56. Gupta M, Abdelsalam M, Khorsandroo S, Mittal S (2020) Security and privacy in smart farming: challenges and opportunities. IEEE Access 8:34564–34584

    Article  Google Scholar 

  57. Hazra A, Rana P, Adhikari M, Amgoth T (2023) Fog computing for next-generation Internet of Things: Fundamental, state-of-the-art and research challenges. Comput Sci Rev 48(100549)

  58. de Araujo Zanella AR, da Silva E, Albini LCP (2020) Security challenges to smart agriculture: current state, key issues, and future directions. Array 8(2590):0056

    Google Scholar 

  59. Rahimi M, Songhorabadi M, Kashani MH (2020) Fog-based smart homes: a systematic review. J Netw Comput 153(102531)

  60. Ferrag MA, Shu L, Yang X, Derhab A, Maglaras L (2020) Security and privacy for green IoT-based agriculture: review, blockchain solutions, and challenges. IEEE Access 8:32031–32053

    Article  Google Scholar 

  61. Sakthi U, Rose JD (2020) Smart agricultural knowledge discovery system using IoT technology and fog computing. In: Proceedings of the 2020 third international conference on smart systems and inventive technology (ICSSIT), Tirunelveli, India, pp 20–22 August 2020

  62. Baghrous M, Ezzouhairi A, Benamar N (2020) Smart farming system based on fog computing and LoRa technology. Embedded systems and artificial intelligence. Springer, Fez, Morocco, pp 217–225

    Chapter  Google Scholar 

  63. Hwerbi K, Benalaya N, Amdouni I, Laouiti A, Adjih C, Saidane L (2022) A survey on the opportunities of blockchain and UAVs in agriculture. 2022 IEEE 11th IFIP international conference on performance evaluation and modeling in wireless and wired networks (PEMWN). Italy, Rome, pp 1–6

    Google Scholar 

  64. Zhang X, Cao Z, Dong W (2020) Overview of edge computing in the Agricultural Internet of Things: key technologies, applications, challenges. IEEE Access 8:141748–141761

    Article  Google Scholar 

  65. Wheeb AH, Nordin R, Samah AA, Alsharif MH, Khan MA (2022) Topology-based routing protocols and mobility models for flying ad hoc networks: a contemporary review and future research directions. Drones 6(9)

  66. Liao Z, Ma Y, Huang J, Wang J, Wang J (2021) HOTSPOT: a UAV-assisted dynamic mobility-aware offloading for mobile-edge computing in 3-D space. In: IEEE internet of things journal, vol 8, no 13, pp 10940–10952, 1 July1, 2021

  67. Zhang J, Zhou L, Zhou F, Seet BC, Zhang H, Cai Z, Wei J (2020) Computation-efficient offloading and trajectory scheduling for multi-UAV assisted mobile edge computing. IEEE Trans Veh Technol 69:2114–2125

    Article  Google Scholar 

  68. Na Z, Liu Y, Shi J, Liu C, Gao Z (2021) UAV-supported clustered NOMA for 6G-enabled internet of things: trajectory planning and resource allocation. In: IEEE internet of things journal, vol 8, no 20, pp 15041–15048, 15 Oct 15, 2021

  69. Asiful Huda SM, Moh S (2022) Survey on computation offloading in UAV-enabled mobile edge computing. J Netw Comput Appl 201(103341)

  70. Masroor R, Naeem M, Ejaz W (2021) Efficient deployment of UAVs for disaster management: a multi-criterion optimization approach. Comput Commun 21(177):185–194

    Article  Google Scholar 

  71. Lee S, Shin JS (2023) A new location verification protocol and blockchain-based drone rental mechanism in smart farming. Comput Electron Agric 214(108267)

  72. Ning Z, et al. (2023) Dynamic computation offloading and server deployment for UAV-enabled multi-access edge computing. In: IEEE transactions on mobile computing, vol 22, no 5, pp 2628–2644, 1 May 2023

  73. Sun S, Zhang G, Mei H, Wang K (2021) Yang K (2021) Optimizing multi-UAV deployment in 3-D space to minimize task completion time in UAV-enabled mobile edge computing systems. IEEE Commun. Lett. 25:579–583

    Article  Google Scholar 

  74. Liu Q, Shi L, Sun L, Li J, Ding M, Shu FS (2020) Path planning for UAV-mounted mobile edge computing with deep reinforcement learning. IEEE Trans Veh Technol 69:5723–5728

    Article  Google Scholar 

  75. Botteghi N, Kamilaris A, Sinai L, Sirmacek B (2020) Multi-agent path planning of robotic swarms in agricultural fields. ISPRS Ann Photogramm Remote Sens Spat Inf Sci V-1: 1–8

  76. Su C, Ye F, Wang LC, Wang L, Tian Y, Han Z (2020) UAV-assisted wireless charging for energy-constrained IoT devices using dynamic matching. IEEE Internet Things J 7(6):4789–4800

  77. Wu G, Miao Y, Zhang Y, Barnawi A (2020) Energy efficient for UAV-enabled mobile edge computing networks: intelligent task prediction and offloading. Comput Commun 150:556–562

    Article  Google Scholar 

  78. Ratnaparkhi S, Khan S, Arya C, Khapre S, Singh P, Diwakar M, Shankar A (2020) Smart agriculture sensors in IOT: a review. Mater Today Proc

  79. Bellendorf J, Mann ZÁ (2020) Classification of optimization problems in fog computing. Futur Gener Comput Syst 107

  80. Wu G, Miao Y, Zhang Y, Barnawi A (2020) Energy efficient for UAV-enabled mobile edge computing networks: intelligent task prediction and offloading. Comput Commun 150:556–562

    Article  Google Scholar 

  81. Gasmi K et al (2022) A survey on computation offloading and service placement in fog computing-based IoT. J Supercomput 78:1983–2014

    Article  Google Scholar 

  82. Hamdi AMA et al (2022) Task offloading in vehicular fog computing: state-of-the-art and open issues. Future Gener Comput Syst 133:201–212

    Article  Google Scholar 

  83. Tang L, Tang B, Zhang L, Guo F, He H (2021) Joint optimization of network selection and task offloading for vehicular edge computing. J Cloud Comput 10(1):1–13

    Article  Google Scholar 

  84. Fu Y, Yang X, Yang P, Wong AK, Shi Z, Wang H, Quek TQ (2021) Energy-efficient offloading and resource allocation for mobile edge computing enabled mission-critical Internet-of-Things systems. Eurasip J Wirel Commun Netw 21(1):1–16

    Google Scholar 

  85. Nayeri ZM, Ghafarian T, Javadi B (2021) Application placement in fog computing with AI approach: taxonomy and a state of the art survey. J Netw Comput Appl 185

  86. Yang M-D, Boubin JG, Tsai HP, Tseng H-H, Hsu Y-C, Stewart CC (2020) Adaptive autonomous UAV scouting for rice lodging assessment using edge computing with deep learning. Comput Electron Agric 179(105817)

  87. De S, Barbosa A, Rego AL, P, Carneiro T, Rodrigues JDC, Filho PPR, De Souza JN, Chamola V, De Albuquerque VHC, Sikdar B (2020) Computation offloading for vehicular environments: a survey. IEEE Access 8(1):198214–198243

  88. Wang B, Wang C, Huang W, Song Y, Qin X (2020) A survey and taxonomy on task offloading for edge cloud computing. IEEE Access 8(1):186080–186101

    Article  Google Scholar 

  89. Lin H, Zeadally S, Chen Z, Labiod H, Wang L (2020) A survey on computation offloading modeling for edge computing. J Netw Comput Appl 20(102781)

  90. Apolo-Apolo OE, et al. (2020) A cloud-based environment for generating yield estimation maps from apple orchards using UAV imagery and a deep learning technique. Front Plant Sci 11(1086)

  91. Shirin Abkenar F, et al. (2022) A survey on mobility of edge computing networks in IoT: state-of-the-art, architectures, and challenges. In: IEEE Communications Surveys & Tutorials, vol 24, no 4, pp 2329–2365, Fourthquarter

  92. Raouhi EM, Lachgar M, Hrimech H, Kartit A (2023) Unmanned aerial vehicle-based applications in smart farming: a systematic review. Int J Adv Comput Sci Appl 14(6):1150–1165

    Google Scholar 

  93. Jalajamony HM, Nair M, Jones-Whitehead M, Abbas MI, Harris N, Fernandez RE (2023) Aerial to terrestrial edge communication using LoRa in drone-aided precision agriculture. SoutheastCon, (2023) Orlando. FL, USA, pp 722–723

  94. Qu C, Sorbelli FB, Singh R, Calyam P, Das SK (2023) Environmentally-aware and energy-efficient multi-drone coordination and networking for disaster response. In: IEEE transactions on network and service management, vol 20, no 2, pp 1093-1109, June 2023

  95. Li F, Luo J, Qiao Y, Li Y (2023) Joint UAV deployment and task offloading scheme for multi-UAV-assisted edge computing. Drones 7(5):284

  96. Kalyani Y, Bermeo NV, Collier R (2023) Digital twin deployment for smart agriculture in cloud-fog-edge infrastructure. Int J Parallel Emergent Distrib Syst 1–16

  97. Devarajan GG, Nagarajan SM, Ramana TV, Vignesh T, Ghosh U, Alnumay W (2023) DDNSAS: deep reinforcement learning based deep Q-learning network for smart agriculture system. Sustain Comput Inform Syst 39:2210–5379

    Google Scholar 

  98. Min W, Khakimov A, Ateya AA, ElAffendi M, Muthanna A, Abd El-Latif AA, Muthanna MSA (2023) Dynamic offloading in flying fog computing: optimizing IoT network performance with mobile drones. Drones 7(10):622

    Article  Google Scholar 

  99. Massaoudi A, Berguiga A, Harchay A, Ben Ayed M, Belmabrouk H (2023) Spectral and energy efficiency trade-off in UAV-based olive irrigation systems. Appl Sci 13(19):10739

    Article  Google Scholar 

  100. Tao X, Silvestri S (2023) Integrating UAV and LoRaWAN in WSN for intelligent monitoring in large-scale rural farms. 2023 IEEE international conference on pervasive computing and communications workshops and other affiliated events (PerCom Workshops). Atlanta, GA, USA, pp 166–167

    Chapter  Google Scholar 

  101. Padhy S, Alowaidi M, Dash S, Alshehri M, Malla PP, Routray S, Alhumyani H (2023) AgriSecure: a fog computing-based security framework for agriculture 4.0 via blockchain. Processes 11(3): 757

Download references

Funding

This research was conducted under the project PHC-Utique 21G1116 funded by the partnership Hubert Curien “Utique” of the French Ministry of Europe and Foreign Affairs and the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiraz Houaidia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhifaoui, S., Houaidia, C. & Saidane, L.A. Computing paradigms for smart farming in the era of drones: a systematic review. Ann. Telecommun. 79, 35–59 (2024). https://doi.org/10.1007/s12243-023-00997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-023-00997-0

Keywords

Navigation