[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Use of Hill Shape with Various Nitrogen Timing Splits to Improve Fertilizer Use Efficiency

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The efficient use of fertilizer nitrogen (N) is critical for potato production in regions with sandy soils as concerns for groundwater contamination have become more apparent. The interactive effects of different hill shapes and distribution of in-season N fertilizer applications at various timings were evaluated in a 3-year potato (Solanum tuberosum L. cv. Russet Burbank) field experiment on a sandy soil in central Wisconsin. A split-plot design was used with hill shape (standard, shaped-plateau, or pointed) as the main plots and 202 kg N ha−1 divided into two, three, or four applications as the split plots. Broader, flatter hills provided tuber yield increases of 7 to 10 %, tuber size and grade improvements of 8 to 25 %, and increased tuber N uptake an average of 22 % in some years; however, post-emergence hilling operations negatively affected yield and tuber size and grade out in 1 of 2 years. Splitting the N into three in-season applications (emergence, early tuberization, and tuberization + 20 days) increased tuber yield by about 4 % or tuber size by 19 % in years where rain increased leaching potential on this sandy soil, but further splitting increased the proportion of small tubers that passed a 5.1-cm screen. This study confirmed that more blocky-shaped hills with only one hilling operation at emergence can significantly benefit potato yield and quality, and fertilizer N use efficiency on these sandy soils.

Resumen

El uso eficiente de fertilizante nitrogenado (N) es crítico para la producción de papa en regiones con suelos arenosos, a medida que se ha vuelto más aparente la preocupación sobre la contaminación del agua del suelo. Se evaluaron los efectos interactivos de diferentes formas del surco y la distribución de las aplicaciones del fertilizante nitrogenado en el ciclo del cultivo en varios tiempos en un experimento de campo de tres años en papa (Solanum tuberosum L. var. Russet Burbank) en un suelo arenoso en el centro de Wisconsin. Se usó un diseño de parcelas divididas con la forma del surco (normal, surco aplanado o en punta) como parcelas principales y 202 Kg N ha−1 divididos en dos, tres, o cuatro aplicaciones como las parcelas divididas. Los surcos mas anchos, aplanados, arrojaron incrementos en el rendimiento de tubérculos de 7 a 10 %, mejoras en el tamaño del tubérculo y en su calidad de 8 a 25 %, y aumento en la absorción del N por el tubérculo en un promedio de 22 % en algunos años; no obstante, las operaciones de aporque de post-emergencia afectaron negativamente el rendimiento y el tamaño y calidad de tubérculo en uno de dos años. La división en tres aplicaciones del N en el ciclo (emergencia, inicio de la tuberización y 20 días después) aumentó el rendimiento de tubérculo en cerca del 4 % o en su tamaño en 19 % en años donde la lluvia aumentó el potencial de lixiviación en este suelo arenoso, pero la división en más aplicaciones aumentó la proporción de tubérculos pequeños que pasaron por la malla de 5.1 cm. Este estudio confirmó que más surcos en forma de bloques con una sola operación de aporque a la emergencia pueden beneficiar significativamente el rendimiento y calidad de la papa y la eficiencia en el uso del fertilizante nitrogenado en estos suelos arenosos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arriaga, F.J., B. Lowery, and K.A. Kelling. 2009. Surfactant impact on nitrogen utilization and leaching in potatoes. American Journal of Potato Research 86: 383–390.

    Article  CAS  Google Scholar 

  • Bohl, W.H., and S.L. Love. 2005. Effect of plant depth and hilling practices on total, US No. 1, and field greening tuber yields. American Journal of Potato Research 82: 441–450.

    Article  Google Scholar 

  • Curwen, D., and L.R. Massie. 1990. Wisconsin Irrigation Scheduling Program, Version 3.0. IPM Program, Univ. of Wisconsin-Extension, Cooperative Extension Service, Madison, Wisconsin.

  • Dwelle, R.B. 2003. Potato growth and development. p. 9–19. In Potato Production Systems, J.C. Stark and S.L. Love (editors). Moscow: University of Idaho Extension.

  • Epstein, E. 1966. Effect of soil temperature at different growth stages on growth and development of potato plants. Agronomy Journal 58: 169–171.

    Article  Google Scholar 

  • Errebhi, M., C.J. Rosen, S.C. Gupta, and D.E. Birong. 1998. Potato yield response and nitrate leaching as influenced by nitrogen management. Agronomy Journal 90: 10–15.

    Article  Google Scholar 

  • Evanylo, G.K. 1989. Rate and timing of nitrogen fertilizer for white potatoes in Virginia. American Potato Journal 66: 461–470.

    Article  Google Scholar 

  • Horneck, D., and C. Rosen. 2008. Measuring nutrient accumulation rates of potatoes – Tools for better management. Better Crops 92: 4–6.

    Google Scholar 

  • Lachat Instruments. 1992. Quikchem method 13-107-06-02-D. User Manual, Lachat Instruments, Mequon: Wisconsin. Total Kjeldahl nitrogen in soil/plants.

    Google Scholar 

  • Lachat Instruments. 1996. QuikChem method 12-101-04-1-B. User Manual, Lachat Instruments, Mequon: Wisconsin. Nitrate in water extracts.

    Google Scholar 

  • Ivins, J.D., and P.M. Bremner. 1965. Growth, development and yield in the potato. Outlook on Agriculture 4: 211–217.

    Google Scholar 

  • Joern, B.C., and M.L. Vitosh. 1995. Influence of applied nitrogen on potato. Part I: Yield, quality and nitrogen uptake. American Potato Journal 72: 51–63.

    Article  Google Scholar 

  • Jordan, M.O., K.A. Kelling, B. Lowery, F.J. Arriaga, and P.E. Speth. 2013. Hill shape influences on potato yield, quality and nitrogen use efficiency. American Journal of Potato Research 90: 217–228.

    Article  Google Scholar 

  • Kelling, K.A. 2000. Research observations on petiole nitrate testing. Proceedings of the Annual Wisconsin Potato Meetings 13: 175–184.

    Google Scholar 

  • Kelling, K.A., and P.E. Speth. 1998. Timing of nitrogen application on potatoes. Proceedings of the Annual Wisconsin Potato Meetings 11: 61–72.

    Google Scholar 

  • Kelling, K.A., and P.E. Speth. 2004. Nitrogen recommendations for new Wisconsin varieties. Proceedings of the Annual Wisconsin Potato Meetings 17: 111–122.

    Google Scholar 

  • Kelling, K.A., S.A. Wilner, R.F. Hensler, and L.M. Massie. 1998. Placement and irrigation effects on nitrogen use efficiency. Proceedings of the Annual Wisconsin Potato Meetings 11: 79–88.

    Google Scholar 

  • Kleinkopf, G.E., D.T. Westermann, and R.B. Dwelle. 1981. Dry matter production and nitrogen utilization by six potato cultivars. Agronomy Journal 73: 799–802.

    Article  Google Scholar 

  • Kleinschmidt, G.D., G.E. Kleinkopf, D.T. Westermann, and J.C. Zalewski. 1984. Specific gravity of potatoes. Current Information Series No. 609, University of Idaho.

  • Kouwenhoven, J.K. 1970. Yield, grading and distribution of potatoes in ridges in relation to planting depth and ridge size. Potato Research 13: 59–77.

    Article  Google Scholar 

  • Lauer, D.A. 1986. Russet Burbank yield response to sprinkler-applied nitrogen fertilizer. American Potato Journal 63: 61–69.

    Article  Google Scholar 

  • Love, S.L., J.C. Stark, and T. Salaiz. 2005. Response of four potato cultivars to rate and timing of nitrogen fertilizer. American Journal of Potato Research 82: 21–30.

    Article  Google Scholar 

  • MacKerron, D.K.L. 1985. A simple model of potato growth and yield. Part II. Validation and external sensitivity. Agricultural and Forest Meteorology 34: 285–300.

    Article  Google Scholar 

  • MacKerron, D.K.L., and P.D. Waister. 1985. A simple model of potato growth and yield. Part I. Model development and sensitivity analysis. Agricultural and Forest Meteorology 34: 241–252.

    Article  Google Scholar 

  • MacLean, A.A. 1984. Time of application of fertilizer nitrogen for potatoes in Atlantic Canada. American Potato Journal 61: 23–29.

    Article  Google Scholar 

  • Marinus, J. 1993. The effect of potato seed tuber age and soil temperature on the phenomenon of non-emergence. Potato Research 36: 63–69.

    Article  Google Scholar 

  • Moore, G.C. 1937. Soil and Plant Response to Certain Methods of Potato Cultivation. Cornell Agricultural Experiment Station Bulletin 662. 48 pp.

  • Moreau, G.A. 1999. The effect of hilling frequency on yield and quality of Shepody and Russet Burbank potatoes. Spudline Newsletter 37(2): 6–7.

    Google Scholar 

  • Munoz, F., R.S. Mylavarapu, and C.M. Hutchinson. 2005. Environmentally responsible potato production: A review. Journal of Plant Nutrition 28: 1287–1309.

    Article  CAS  Google Scholar 

  • Nelson, D.W., and L.E. Sommers. 1973. Determination of total nitrogen in plant material. Agronomy Journal 65: 109–112.

    Article  CAS  Google Scholar 

  • Ojala, J.C., J.C. Stark, and G.E. Kleinkopf. 1990. Influence of irrigation and nitrogen management on potato yield and quality. American Potato Journal 67: 29–43.

    Article  Google Scholar 

  • Prestt, A.J., and M.K.V. Carr. 1984. Soil management and planting techniques for potatoes. Aspects of Applied Biology 7: 187–204.

    Google Scholar 

  • Roberts, S., W.H. Weaver, and J.P. Phelps. 1982. Effect of rate and time of fertilization on nitrogen and yield of Russet Burbank potatoes under center pivot irrigation. American Potato Journal 59: 77–86.

    Article  Google Scholar 

  • Roberts, S., H.H. Cheng, and F.O. Farrow. 1991. Potato uptake and recovery of nitrogen-15-enriched ammonium nitrate from periodic applications. Agronomy Journal 83: 378–381.

    Article  CAS  Google Scholar 

  • Saffigna, P.G., and D.R. Keeney. 1977. Nitrate and chloride in ground water under irrigated agriculture in central Wisconsin. Ground Water 15: 170–177.

    Article  CAS  Google Scholar 

  • Saffigna, P.G., D.R. Keeney, and C.B. Tanner. 1977. Nitrogen, chloride, and water balance with irrigated Russet Burbank potatoes in a sandy soil. Agronomy Journal 69: 251–257.

    Article  CAS  Google Scholar 

  • SAS (Statistical Analysis System). 1999. SAS User’s Guide, Version 8.0. Statistical Analysis Systems Institute, Cary, North Carolina.

  • Starr, G.C., E.T. Cooley, B. Lowery, and K.A. Kelling. 2005. Soil water fluctuations in loamy sand under irrigated potato. Soil Science 170: 77–89.

    Article  CAS  Google Scholar 

  • Stites, W., and G.J. Kraft. 2001. Nitrate and chloride loading to groundwater from an irrigated North Central U.S. sand plain vegetable field. Journal of Environmental Quality 30: 1176–1184.

    Article  CAS  PubMed  Google Scholar 

  • van Dam, J., P.L. Kooman, and P.C. Struik. 1996. Effects of temperature and photoperiod on early growth and final number of tubers in potato (Solanum tuberosum L.). Potato Research 39: 51–62.

    Article  Google Scholar 

  • Vos, J. 1999. Soil nitrogen application in potato: Effects on accumulation of nitrogen and dry matter in the crop and on soil nitrogen budget. Journal of Agricultural Science 133: 263–274.

    Article  Google Scholar 

  • Waddell, J.T., S.C. Gupta, J.F. Moncrief, C.J. Rosen, and D.D. Steele. 1999. Irrigation and nitrogen management effects on potato yield, tuber quality, and nitrogen uptake. Agronomy Journal 91: 991–997.

    Article  Google Scholar 

  • Waddell, J.T., S.C. Gupta, J.F. Moncrief, C.J. Rosen, and D.D. Steele. 2000. Irrigation and nitrogen-management impacts on nitrate leaching under potato. Journal of Environmental Quality 29: 251–261.

    Article  CAS  Google Scholar 

  • Westermann, D.T., and G.E. Kleinkopf. 1985. Nitrogen requirements of potatoes. Agronomy Journal 77: 616–621.

    Article  Google Scholar 

  • Westermann, D.T., G.E. Kleinkopf, and L.K. Porter. 1988. Nitrogen fertilizer efficiencies on potatoes. American Potato Journal 65: 377–386.

    Article  Google Scholar 

  • Zebarth, B.J., Y. LeClerc, G. Moreau, and E. Botha. 2004. Rate and timing of nitrogen fertilization of Russet Burbank potato: Yield and processing quality. Canadian Journal of Plant Science 84: 855–863.

    Article  Google Scholar 

Download references

Acknowledgments

Support for portions of this research was provided by the Wisconsin Potato and Vegetable Growers Association Potato Industry Board, the Wisconsin Fertilizer Research Council, and UW College of Agricultural and Life Sciences, and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Kelling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelling, K.A., Arriaga, F.J., Lowery, B. et al. Use of Hill Shape with Various Nitrogen Timing Splits to Improve Fertilizer Use Efficiency. Am. J. Potato Res. 92, 71–78 (2015). https://doi.org/10.1007/s12230-014-9413-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-014-9413-9

Keywords