Abstract
The efficient use of fertilizer nitrogen (N) is critical for potato production in regions with sandy soils as concerns for groundwater contamination have become more apparent. The interactive effects of different hill shapes and distribution of in-season N fertilizer applications at various timings were evaluated in a 3-year potato (Solanum tuberosum L. cv. Russet Burbank) field experiment on a sandy soil in central Wisconsin. A split-plot design was used with hill shape (standard, shaped-plateau, or pointed) as the main plots and 202 kg N ha−1 divided into two, three, or four applications as the split plots. Broader, flatter hills provided tuber yield increases of 7 to 10 %, tuber size and grade improvements of 8 to 25 %, and increased tuber N uptake an average of 22 % in some years; however, post-emergence hilling operations negatively affected yield and tuber size and grade out in 1 of 2 years. Splitting the N into three in-season applications (emergence, early tuberization, and tuberization + 20 days) increased tuber yield by about 4 % or tuber size by 19 % in years where rain increased leaching potential on this sandy soil, but further splitting increased the proportion of small tubers that passed a 5.1-cm screen. This study confirmed that more blocky-shaped hills with only one hilling operation at emergence can significantly benefit potato yield and quality, and fertilizer N use efficiency on these sandy soils.
Resumen
El uso eficiente de fertilizante nitrogenado (N) es crítico para la producción de papa en regiones con suelos arenosos, a medida que se ha vuelto más aparente la preocupación sobre la contaminación del agua del suelo. Se evaluaron los efectos interactivos de diferentes formas del surco y la distribución de las aplicaciones del fertilizante nitrogenado en el ciclo del cultivo en varios tiempos en un experimento de campo de tres años en papa (Solanum tuberosum L. var. Russet Burbank) en un suelo arenoso en el centro de Wisconsin. Se usó un diseño de parcelas divididas con la forma del surco (normal, surco aplanado o en punta) como parcelas principales y 202 Kg N ha−1 divididos en dos, tres, o cuatro aplicaciones como las parcelas divididas. Los surcos mas anchos, aplanados, arrojaron incrementos en el rendimiento de tubérculos de 7 a 10 %, mejoras en el tamaño del tubérculo y en su calidad de 8 a 25 %, y aumento en la absorción del N por el tubérculo en un promedio de 22 % en algunos años; no obstante, las operaciones de aporque de post-emergencia afectaron negativamente el rendimiento y el tamaño y calidad de tubérculo en uno de dos años. La división en tres aplicaciones del N en el ciclo (emergencia, inicio de la tuberización y 20 días después) aumentó el rendimiento de tubérculo en cerca del 4 % o en su tamaño en 19 % en años donde la lluvia aumentó el potencial de lixiviación en este suelo arenoso, pero la división en más aplicaciones aumentó la proporción de tubérculos pequeños que pasaron por la malla de 5.1 cm. Este estudio confirmó que más surcos en forma de bloques con una sola operación de aporque a la emergencia pueden beneficiar significativamente el rendimiento y calidad de la papa y la eficiencia en el uso del fertilizante nitrogenado en estos suelos arenosos.
Similar content being viewed by others
References
Arriaga, F.J., B. Lowery, and K.A. Kelling. 2009. Surfactant impact on nitrogen utilization and leaching in potatoes. American Journal of Potato Research 86: 383–390.
Bohl, W.H., and S.L. Love. 2005. Effect of plant depth and hilling practices on total, US No. 1, and field greening tuber yields. American Journal of Potato Research 82: 441–450.
Curwen, D., and L.R. Massie. 1990. Wisconsin Irrigation Scheduling Program, Version 3.0. IPM Program, Univ. of Wisconsin-Extension, Cooperative Extension Service, Madison, Wisconsin.
Dwelle, R.B. 2003. Potato growth and development. p. 9–19. In Potato Production Systems, J.C. Stark and S.L. Love (editors). Moscow: University of Idaho Extension.
Epstein, E. 1966. Effect of soil temperature at different growth stages on growth and development of potato plants. Agronomy Journal 58: 169–171.
Errebhi, M., C.J. Rosen, S.C. Gupta, and D.E. Birong. 1998. Potato yield response and nitrate leaching as influenced by nitrogen management. Agronomy Journal 90: 10–15.
Evanylo, G.K. 1989. Rate and timing of nitrogen fertilizer for white potatoes in Virginia. American Potato Journal 66: 461–470.
Horneck, D., and C. Rosen. 2008. Measuring nutrient accumulation rates of potatoes – Tools for better management. Better Crops 92: 4–6.
Lachat Instruments. 1992. Quikchem method 13-107-06-02-D. User Manual, Lachat Instruments, Mequon: Wisconsin. Total Kjeldahl nitrogen in soil/plants.
Lachat Instruments. 1996. QuikChem method 12-101-04-1-B. User Manual, Lachat Instruments, Mequon: Wisconsin. Nitrate in water extracts.
Ivins, J.D., and P.M. Bremner. 1965. Growth, development and yield in the potato. Outlook on Agriculture 4: 211–217.
Joern, B.C., and M.L. Vitosh. 1995. Influence of applied nitrogen on potato. Part I: Yield, quality and nitrogen uptake. American Potato Journal 72: 51–63.
Jordan, M.O., K.A. Kelling, B. Lowery, F.J. Arriaga, and P.E. Speth. 2013. Hill shape influences on potato yield, quality and nitrogen use efficiency. American Journal of Potato Research 90: 217–228.
Kelling, K.A. 2000. Research observations on petiole nitrate testing. Proceedings of the Annual Wisconsin Potato Meetings 13: 175–184.
Kelling, K.A., and P.E. Speth. 1998. Timing of nitrogen application on potatoes. Proceedings of the Annual Wisconsin Potato Meetings 11: 61–72.
Kelling, K.A., and P.E. Speth. 2004. Nitrogen recommendations for new Wisconsin varieties. Proceedings of the Annual Wisconsin Potato Meetings 17: 111–122.
Kelling, K.A., S.A. Wilner, R.F. Hensler, and L.M. Massie. 1998. Placement and irrigation effects on nitrogen use efficiency. Proceedings of the Annual Wisconsin Potato Meetings 11: 79–88.
Kleinkopf, G.E., D.T. Westermann, and R.B. Dwelle. 1981. Dry matter production and nitrogen utilization by six potato cultivars. Agronomy Journal 73: 799–802.
Kleinschmidt, G.D., G.E. Kleinkopf, D.T. Westermann, and J.C. Zalewski. 1984. Specific gravity of potatoes. Current Information Series No. 609, University of Idaho.
Kouwenhoven, J.K. 1970. Yield, grading and distribution of potatoes in ridges in relation to planting depth and ridge size. Potato Research 13: 59–77.
Lauer, D.A. 1986. Russet Burbank yield response to sprinkler-applied nitrogen fertilizer. American Potato Journal 63: 61–69.
Love, S.L., J.C. Stark, and T. Salaiz. 2005. Response of four potato cultivars to rate and timing of nitrogen fertilizer. American Journal of Potato Research 82: 21–30.
MacKerron, D.K.L. 1985. A simple model of potato growth and yield. Part II. Validation and external sensitivity. Agricultural and Forest Meteorology 34: 285–300.
MacKerron, D.K.L., and P.D. Waister. 1985. A simple model of potato growth and yield. Part I. Model development and sensitivity analysis. Agricultural and Forest Meteorology 34: 241–252.
MacLean, A.A. 1984. Time of application of fertilizer nitrogen for potatoes in Atlantic Canada. American Potato Journal 61: 23–29.
Marinus, J. 1993. The effect of potato seed tuber age and soil temperature on the phenomenon of non-emergence. Potato Research 36: 63–69.
Moore, G.C. 1937. Soil and Plant Response to Certain Methods of Potato Cultivation. Cornell Agricultural Experiment Station Bulletin 662. 48 pp.
Moreau, G.A. 1999. The effect of hilling frequency on yield and quality of Shepody and Russet Burbank potatoes. Spudline Newsletter 37(2): 6–7.
Munoz, F., R.S. Mylavarapu, and C.M. Hutchinson. 2005. Environmentally responsible potato production: A review. Journal of Plant Nutrition 28: 1287–1309.
Nelson, D.W., and L.E. Sommers. 1973. Determination of total nitrogen in plant material. Agronomy Journal 65: 109–112.
Ojala, J.C., J.C. Stark, and G.E. Kleinkopf. 1990. Influence of irrigation and nitrogen management on potato yield and quality. American Potato Journal 67: 29–43.
Prestt, A.J., and M.K.V. Carr. 1984. Soil management and planting techniques for potatoes. Aspects of Applied Biology 7: 187–204.
Roberts, S., W.H. Weaver, and J.P. Phelps. 1982. Effect of rate and time of fertilization on nitrogen and yield of Russet Burbank potatoes under center pivot irrigation. American Potato Journal 59: 77–86.
Roberts, S., H.H. Cheng, and F.O. Farrow. 1991. Potato uptake and recovery of nitrogen-15-enriched ammonium nitrate from periodic applications. Agronomy Journal 83: 378–381.
Saffigna, P.G., and D.R. Keeney. 1977. Nitrate and chloride in ground water under irrigated agriculture in central Wisconsin. Ground Water 15: 170–177.
Saffigna, P.G., D.R. Keeney, and C.B. Tanner. 1977. Nitrogen, chloride, and water balance with irrigated Russet Burbank potatoes in a sandy soil. Agronomy Journal 69: 251–257.
SAS (Statistical Analysis System). 1999. SAS User’s Guide, Version 8.0. Statistical Analysis Systems Institute, Cary, North Carolina.
Starr, G.C., E.T. Cooley, B. Lowery, and K.A. Kelling. 2005. Soil water fluctuations in loamy sand under irrigated potato. Soil Science 170: 77–89.
Stites, W., and G.J. Kraft. 2001. Nitrate and chloride loading to groundwater from an irrigated North Central U.S. sand plain vegetable field. Journal of Environmental Quality 30: 1176–1184.
van Dam, J., P.L. Kooman, and P.C. Struik. 1996. Effects of temperature and photoperiod on early growth and final number of tubers in potato (Solanum tuberosum L.). Potato Research 39: 51–62.
Vos, J. 1999. Soil nitrogen application in potato: Effects on accumulation of nitrogen and dry matter in the crop and on soil nitrogen budget. Journal of Agricultural Science 133: 263–274.
Waddell, J.T., S.C. Gupta, J.F. Moncrief, C.J. Rosen, and D.D. Steele. 1999. Irrigation and nitrogen management effects on potato yield, tuber quality, and nitrogen uptake. Agronomy Journal 91: 991–997.
Waddell, J.T., S.C. Gupta, J.F. Moncrief, C.J. Rosen, and D.D. Steele. 2000. Irrigation and nitrogen-management impacts on nitrate leaching under potato. Journal of Environmental Quality 29: 251–261.
Westermann, D.T., and G.E. Kleinkopf. 1985. Nitrogen requirements of potatoes. Agronomy Journal 77: 616–621.
Westermann, D.T., G.E. Kleinkopf, and L.K. Porter. 1988. Nitrogen fertilizer efficiencies on potatoes. American Potato Journal 65: 377–386.
Zebarth, B.J., Y. LeClerc, G. Moreau, and E. Botha. 2004. Rate and timing of nitrogen fertilization of Russet Burbank potato: Yield and processing quality. Canadian Journal of Plant Science 84: 855–863.
Acknowledgments
Support for portions of this research was provided by the Wisconsin Potato and Vegetable Growers Association Potato Industry Board, the Wisconsin Fertilizer Research Council, and UW College of Agricultural and Life Sciences, and is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kelling, K.A., Arriaga, F.J., Lowery, B. et al. Use of Hill Shape with Various Nitrogen Timing Splits to Improve Fertilizer Use Efficiency. Am. J. Potato Res. 92, 71–78 (2015). https://doi.org/10.1007/s12230-014-9413-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12230-014-9413-9