[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Activity of novel inhibitors of Staphylococcus aureus biofilms

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is one of the most important pathogens causing chronic biofilm infections. These are becoming more difficult to treat owing to drug resistance, particularly because S. aureus biofilms limit the efficacy of antimicrobial agents, leading to high morbidity and mortality. In the present study, we screened for inhibitors of S. aureus biofilm formation using a natural product library from the Korea Chemical Bank (KCB). Screening by crystal violet-based biomass staining assay identified hit compounds. Further examination of antibiofilm properties of these compounds was conducted and led to the identification of celastrol and telithromycin. In vitro, both celastrol and telithromycin were toxic to planktonic S. aureus and also active against a clinical methicillin-resistant S. aureus (MRSA) isolate. The effect of the compounds on preformed biofilms of clinical MRSA isolates was evaluated by confocal laser scanning microscopy (CLSM), which revealed the absence of typical biofilm architecture. In addition, celastrol and telithromycin inhibited the production of extracellular protein at selected sub-MIC concentrations, which revealed the reduced extracellular polymeric substance (EPS) secretion. Celastrol exhibited greater cytotoxicity than telithromycin. These data suggest that the hit compounds, especially telithromycin, could be considered novel inhibitors of S. aureus biofilm. Although the mechanisms of the effects on S. aureus biofilms are not fully understood, our data suggest that telithromycin could be a useful adjuvant therapeutic agent for S. aureus biofilm-related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Actis L, Srinivasan A, Lopez-Ribot JL et al (2015) Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability. J Mater Sci Mater Med 26:215

    Article  PubMed  Google Scholar 

  • Adam B, Baillie GS, Douglas LJ (2002) Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51:344–349

    Article  PubMed  Google Scholar 

  • Ando E, Monden K, Mitsuhata R et al (2004) Biofilm formation among methicillin-resistant Staphylococcus aureus isolates from patients with urinary tract infection. Acta Med Okayama 58:207–214

    CAS  PubMed  Google Scholar 

  • Arizza V, Vazzana M, Schillaci D et al (2013) Gender differences in the immune system activities of sea urchin Paracentrotus lividus. Comp Biochem Physiol A Mol Integr Physiol 164:447–455

    Article  CAS  PubMed  Google Scholar 

  • Baker MA, Assis SL, Higa OZ, Costa I (2009) Nanocomposite hydroxyapatite formation on a Ti–13Nb–13Zr alloy exposed in a MEM cell culture medium and the effect of H2O2 addition. Acta Biomater 5:63–75

    Article  CAS  PubMed  Google Scholar 

  • Beenken KE, Dunman PM, McAleese F et al (2004) Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186:4665–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady R, Leid J, Costerton J, Shirtliff M (2006) Osteomyelitis: clinical overview and mechanisms of infection persistence. Clin Microbiol Newsletter 28:65–72

    Article  Google Scholar 

  • Brown MR, Allison DG, Gilbert P (1988) Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother 22:777–780

    Article  CAS  PubMed  Google Scholar 

  • Chambers HF (2001) The changing epidemiology of Staphylococcus aureus? Emerg Infect Diseases 7:178–182

    Article  CAS  Google Scholar 

  • Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanda SK, Caldwell JS (2003) Fulfilling the promise: drug discovery in the post-genomic era. Drug Discov Today 8:168–174

    Article  CAS  PubMed  Google Scholar 

  • Chopra I (2003) Antibiotic resistance in Staphylococcus aureus: concerns, causes and cures. Expert Rev Anti-Infect Ther 1:45–55

    Article  CAS  PubMed  Google Scholar 

  • Christensen GD, Simpson WA, Younger JJ et al (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (1999) Methods for determining bactericidal activity of antimicrobial agents; approved guideline M26-A. Wayne, PA

  • Clinical and Laboratory Standards Institute (CLSI) (2013) Performance standards for antimicrobial susceptibility testing. In: 23rd informational supplement, Wayne, PA

  • Cortés ME, Jessika CB, Ruben DS (2011) Biofilm formation, control and novel strategies for eradication. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances, Formatex Research Center, Badajoz, vol 2, pp. 896–905

    Google Scholar 

  • Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350:1422–1429

    Article  CAS  PubMed  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Micro 8:623–633

    CAS  Google Scholar 

  • Gopal R, Kim YG, Lee JH et al (2014) Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother 58:1622–1629

    Article  PubMed  PubMed Central  Google Scholar 

  • Graziano TS, Cuzzullin MC, Franco GC et al (2015) Statins and antimicrobial effects: simvastatin as a potential drug against Staphylococcus aureus biofilm. PLoS One 10:e0128098

    Article  PubMed  PubMed Central  Google Scholar 

  • Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E (2006) Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368:874–885

    Article  PubMed  Google Scholar 

  • Hassan A, Usman J, Kaleem F et al (2011) Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 15:305–311

    Article  PubMed  Google Scholar 

  • Klevens RM, Morrison MA, Nadle J et al (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771

    Article  CAS  PubMed  Google Scholar 

  • Kumon H, Tomochika K, Matunaga T et al (1994) A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol 38:615–619

    Article  CAS  PubMed  Google Scholar 

  • Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maki DG, Tambyah PA (2001) Engineering out the risk for infection with urinary catheters. Emerg Infect Dis 7:342–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandakumar V, Chittaranjan S, Kurian VM, Doble M (2013) Characteristics of bacterial biofilm associated with implant material in clinical practice. Polym J 45:137–152

    Article  CAS  Google Scholar 

  • National Institue of Health (NIH) (2003) Research on microbial biofilms: PA Number: PA-03-047. http://grants.nih.gov/grants/guide/pa-files/PA-03-047.html

  • Nosyk O, ter Haseborg E, Metzger U, Frimmel FH (2008) A standardized pre-treatment method of biofilm flocs for fluorescence microscopic characterization. J Microbiol Methods 75:449–456

    Article  CAS  PubMed  Google Scholar 

  • Ooi N, Eady EA, Cove JH, O’Neill AJ (2015) Redox-active compounds with a history of human use: antistaphylococcal action and potential for repurposing as topical antibiofilm agents. J Antimicrob Chemother 70:479–488

    Article  CAS  PubMed  Google Scholar 

  • Otto M (2004) Virulence factors of the coagulase-negative staphylococci. Front Biosci 9:841–863

    Article  CAS  PubMed  Google Scholar 

  • Pearson RD, Steigbigel RT, Davis HT, Chapman SW (1980) Method for reliable determination of minimal lethal antibiotic concentrations. Antimicrob Agents Chemother 18:699–708

  • Qin C, Tan KL, Zhang CL et al (2012) What does it take to synergistically combine sub-potent natural products into drug-level potent combinations? PLoS One 7:e49969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice SA, McDougald D, Kumar N, Kjelleberg S (2005) The use of quorum-sensing blockers as therapeutic agents for the control of biofilm-associated infections. Curr Opin Investig Drugs 6:178–184

    CAS  PubMed  Google Scholar 

  • Sharma A, Rogers C, Rimland D et al (2013) Post-discharge mortality in patients hospitalized with MRSA infection and/or colonization. Epidemiol Infect 141:1187–1198

    Article  CAS  PubMed  Google Scholar 

  • Shirtliff ME, Mader JT, Camper AK (2002) Molecular interactions in biofilms. Chem Biol 9:859–871

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Costa EM, Horta B et al (2016) Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties. Biofouling 32:853–860

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS (1994) Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 38:1052–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  • Tacconelli E, De Angelis G, Cataldo MA et al (2008) Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? A systematic review and meta-analysis. J Antimicrob Chemother 61:26–38

    Article  CAS  PubMed  Google Scholar 

  • Yarwood JM, Schlievert PM (2003) Quorum sensing in Staphylococcus infections. J Clin Invest 112:1620–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351:1645–1654

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Soonchunhyang University Research Fund and by Basic Science Research Program, through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2015R1D1A1A02061773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Bin Eom.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Fig. S1

Representation of high-throughput screening for inhibitors of S. aureus ATCC 29213 biofilm formation. After screening at 250 μmol/L, compound activities were confirmed at 5 μmol/L (a). Results are expressed as percentage inhibition compared with controls lacking the compound. Triangle and square symbols indicate celastrol and telithromycin, respectively. Chemical structures of celastrol (left) and telithromycin (right) (b) (GIF 170 kb)

High Resolution (TIFF 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, SG., Lee, SY., Lee, SM. et al. Activity of novel inhibitors of Staphylococcus aureus biofilms. Folia Microbiol 62, 157–167 (2017). https://doi.org/10.1007/s12223-016-0485-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-016-0485-4

Keywords

Navigation