[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Contrasting architectural and reproductive parameters in Mimosa maguirei in response to holoparasitism by Pilostyles blanchetii

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Parasitic plant species, such as holoparasites, develop exclusively within the tissues of their hosts, are devoid of photosynthetic capability, and cause changes in their hosts. In this study, we analyse the effects of the holoparasitic species Pilostyles blanchetii on Mimosa maguirei. We assessed the effects of the holoparasite on the architecture and development of the host plant through the height, the number of branches and the number of leaves. The influence of the holoparasite on the reproductive performance of the host was tested by evaluating the number of fruits and seeds produced by M. maguirei. The holoparasite Pilostyles blanchetii negatively affected the height of M. maguirei; however, there was a positive effect on the number of branches and leaves of the host, perhaps indicating resource manipulation by the holoparasite. In relation to reproductive performance, there was a reduction in the number of fruits and seeds in parasitized individuals. Overall, this study indicates strong changes in host plant architecture and particularly a reduction in the reproductive performance of parasitized plant individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ageitos JM, Viñas M, Villa TG (2019) Horizontal gene transfer in obligate parasites In Villa T, Viñas M (eds) Horizontal gene transfer. Springer, Cham, pp 235–255

  • Amaral MM, Ceccantini G (2011) The endoparasite Pilostyles ulei (Apodanthaceae–Cucurbitales) influences wood structure in three host species of Mimosa. IAWA J 32:1–13

    Article  Google Scholar 

  • Bellot S, Renner SS (2013) Pollination and mating systems of Apodanthaceae and the distribution of reproductive traits in parasitic angiosperms. Amer J Bot 100:1083–1094

    Article  Google Scholar 

  • Bellot S, Renner SS (2014) The systematics of the worldwide endoparasite family Apodanthaceae (Cucurbitales), with a key, a map, and color photos of most species. Phytokeys 36:41–57

    Article  Google Scholar 

  • Brasil B (2010) Ciclo de vida, fenologia e anatomia floral de Pilostyles (Apodanthaceae – Rafflesiaceae s. l.): subsídios para um posicionamento filogenético da família Apodanthaceae. Master’s thesis, University of São Paulo, São Paulo, Brazil

  • Clarke CR, Timko MP, Yoder JI, Axtell MJ, Westwood JH (2019) Molecular dialog between parasitic plants and their hosts. Ann Rev Phytopathol 57:279–299

    Article  CAS  Google Scholar 

  • Dawkins R, Krebs JR (1979) Arms races between and within species. Proc Roy Soc London Ser B, Biol Sci 205:489–511

    CAS  Google Scholar 

  • de Vega C, Ortiz PL, Arista M, Talavera S (2007) The endophytic system of Mediterranean Cytinus (Cytinaceae) developing on five host Cistaceae species. Ann Bot 100:1209–1217

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vega C, Berjano R, Arista M, Ortiz PL, Talavera S, Stuessy TF (2008) Genetic races associated with the genera and sections of host species in the holoparasitic plant Cytinus (Cytinaceae) in the Western Mediterranean basin. New Phytol 178:875–887

    Article  PubMed  Google Scholar 

  • de Vega C, Arista M, Ortiz PL Talavera S (2010) Anatomical relations among endophytic holoparasitic angiosperms, autotrophic host plants and mycorrhizal fungi: a novel tripartite interaction. Amer J Bot 97:730–737

    Article  Google Scholar 

  • Endriss W (1902) Monographie von Pilostyles ingae (Karst) (Pilostyles ulei Solms-Laub.). Flora 91:209–236

    Google Scholar 

  • Erdogan P (2021) Parasitic plants in agriculture and management. In Gonzalez AM, Sato HA (eds) Parasitic plants. IntechOpen. pp 1–12

  • Fernandes GW (2016) Ecology and conservation of mountaintop grasslands in Brazil. Springer International Publishing, Switzerland

    Book  Google Scholar 

  • Fernandes GW, De Mattos EA, Franco AC, Lüttge U, Ziegler H (1998) Influence of the parasite Pilostyles ingae (Rafflesiaceae) on some physiological parameters of the host plant, Mimosa naguirei (Mimosaceae). Bot Acta 111:51–54

    Article  CAS  Google Scholar 

  • Filipowicz N, Renner SS (2010) The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees. BMC Evol Biol 10:219–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Furst H, Da Silva RP, Fernandes GW, Galuppo LZ, Machado IC, Villar P, Negreiros D (2017) Rebrotamento pós-fogo em arbusto ameaçado e microendêmico dos campos rupestres da Serra do Cipó, sudeste do Brasil. Neot Biol Conserv 12:143–149

    Google Scholar 

  • Giulietti AM, Carneiro-Torres DS, Marinho LC, de Queiroz LP, de Oliveira RP (2019) Flora of Bahia: Apodanthaceae. Sitientibus, Sér Ci Biol 19:https://doi.org/10.13102/scb3772

  • Gomes AL, Fernandes GW (1994) Influence of parasitism by Pilostyles ingae (Rafflesiaceae) on its host plant, Mimosa naguirei (Leguminosae). Ann Bot 74:205–208

  • Koskela T, Salonen V, Mutikainen P (2001) Interaction of a host plant and its holoparasite: effects of previous selection by the parasite. J Evol Biol 14:910–917

    Article  Google Scholar 

  • Marschner IC (2011) glm2: Fitting generalized linear models with convergence problems. R J 3:12–15

    Article  Google Scholar 

  • Nickrent DL (2020) Parasitic angiosperms: how often and how many? Taxon 69:5–27

    Article  Google Scholar 

  • Pastore M, Rangel WDM, Giulietti AM (2018) Flora das cangas da Serra dos Carajás, Pará, Brasil: Apodanthaceae. Rodriguésia 69:1049–1053

    Article  Google Scholar 

  • Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751

    Article  PubMed  Google Scholar 

  • R Development Core Team (2022) R: a language and environment for statistical computing, Vienna, Austria. Available at https://www.R-project.org

  • Rando JG, Hervencio P, Souza VC, Giulietti AM, Pirani JR (2013) Flora da Serra do Cipó, Minas Gerais: Leguminosae – “Caesalpinioideae”. Bol Bot Univ São Paulo 31:141–198

    Google Scholar 

  • Simon MF, Proença C (2000) Phytogeographic patterns of Mimosa (Mimosoideae, Leguminosae) in the Cerrado biome of Brazil: an indicator genus of high-altitude centers of endemism. Biol Conservation 96:279–296

    Article  Google Scholar 

  • Spallek T, Melnyk CW, Wakatake T, Zhang J, Sakamoto Y, Kiba T, Yoshidae S, Matsunagad S, Sakakibaraa H, Shirasu K (2017) Interspecies hormonal control of host root morphology by parasitic plants. Proc Natl Acad Sci USA 114:5283–5288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stannard BL (1995) Rafflesiaceae. In Stannard BL (ed) Flora of the Pico das Almas, Chapada Diamantina, Bahia, Brazil. Royal Botanic Gardens, Kew pp 1–544

  • Teixeira Costa L, Davis CC (2021) Life history, diversity, and distribution in parasitic flowering plants. Pl Physiol 187:32–51

    Article  CAS  Google Scholar 

  • Teixeira Costa L, Davis CC, Ceccantini G (2021) Striking developmental convergence in angiosperm endoparasites. Amer J Bot 108:756–768

    Article  Google Scholar 

  • Těšitel J (2016) Functional biology of parasitic plants: a review. Pl Ecol Evol 149:5–20

    Article  Google Scholar 

  • The Plant List (2013) Version 1.1. Available at http://www.theplantlist.org/1.1/browse/A (Accessed 11 June 2022)

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Vattimo I (1978) Contribuição ao conhecimento da distribuição geográfica do gênero Pilostyles Guill. (Rafflesiaceae). Rodriguésia 3:7–11

    Google Scholar 

  • Wakelin D (1997) Parasites and the immune system. Conflict or compromise? Bioscience 47:32–40

    Article  Google Scholar 

Download references

Acknowledgements

We thank V. Carvalho and A.A. Efremova for laboratory assistance and commenting on earlier version of this manuscript, two anonymous reviewers for their comments and observation, which helped to considerable improve the original version of this manuscript, and the Reserva Vellozia for logistics in the field. This work was supported by the graduate programme in Ecology, Conservation and Wildlife Management (UFMG), by the Long Term Ecological Research programme of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fapemig, and by the AngloAmerican Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wilson Fernandes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 84 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, G.W., Paschoal, A.M.O., Da Rocha, W.D. et al. Contrasting architectural and reproductive parameters in Mimosa maguirei in response to holoparasitism by Pilostyles blanchetii. Folia Geobot 58, 21–29 (2023). https://doi.org/10.1007/s12224-023-09424-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-023-09424-7

Keywords

Navigation