[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The effects of olive leaf extract from a Sicilian cultivar in an experimental model of hepatic steatosis

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Olive oil is a well-known product for its health benefit, but the leaf has also been used as a traditional medicine in the Mediterranean for centuries. Olive leaves contain a great variety of chemical substances belonging to phenolic acids, phenolic alcohols, flavonoids and secoiridoids, and many other pharmacological active compounds with an important antioxidant effects such as oleuropein (OE), hydroxytyrosol (HT), tyrosol, cumaric acid, ferulic acid, caffeic acid, vanillic acid, rutin, verbascoside, luteolin, quercetin, dimethyloleuropein and ligstroside. Characterization of these compounds demonstrated that they can play an important role in human health, because of their ability to improve glucose homeostasis, ameliorate dyslipidemia and reduce inflammatory cytokine. The aim of this study was to investigate the effect of olive leaf extract (OLE) from Sicilian cultivar in an in vitro model of hepatic steatosis to evaluate the protective effects again free fatty acids accumulation in hepatocytes. We report here that OLE treatment ameliorated the lipid metabolism, and this effect was coupled with a parallel decrease in number of lipid droplets and a concomitant increase in FABP-4, SIRT-1 and HO-1 expression. Furthermore, OLE treatment induced a significantly reduction of the inflammatory cytokines IL-1β and TNF-α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

OLE:

Olive leaf extract

HO-1:

Heme oxygenase-1

FABP4:

Fatty acid binding protein 4

SIRT1:

Sirtuin 1

IL-1β:

Interleukin 1 beta

TNF-α:

Tumor necrosis factor alpha

References

  • Abraham NG, Junge JM, Drummond GS (2016) Translational significance of heme oxygenase in obesity and metabolic syndrome. Trends Pharmacol Sci 37:17–36. doi:10.1016/j.tips.2015.09.003

    Article  CAS  Google Scholar 

  • Bahcecioglu IH, Yalniz M, Ataseven H, Ilhan N, Ozercan IH, Seckin D, Sahin K (2005) Levels of serum hyaluronic acid, TNF-alpha and IL-8 in patients with nonalcoholic steatohepatitis. Hepatogastroenterology 52:1549–1553

    CAS  Google Scholar 

  • Benavente-Garcia O, Castillo J, Lorente J, Alcaraz M (2002) Radioprotective effects in vivo of phenolics extracted from Olea europaea L. leaves against X-ray-induced chromosomal damage: comparative study versus several flavonoids and sulfur-containing compounds. J Med Food 5:125–135. doi:10.1089/10966200260398152

    Article  CAS  Google Scholar 

  • Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Ann Rev Biochem 73:417–435. doi:10.1146/annurev.biochem.73.011303.073651

    Article  CAS  Google Scholar 

  • Brandwilliams W, Cuvelier ME, Berset C (1995) Use of a free-radical method to evaluate antioxidant activity. Food sci technol-leb 28:25–30

    Article  CAS  Google Scholar 

  • Byrne CD, Targher G (2015) NAFLD: a multisystem disease. J Hepatol 62:S47–S64. doi:10.1016/j.jhep.2014.12.012

    Article  Google Scholar 

  • Cao J et al (2011) Lentiviral-human heme oxygenase targeting endothelium improved vascular function in angiotensin II animal model of hypertension. Human Gene Ther 22:271–282. doi:10.1089/hum.2010.059

    Article  CAS  Google Scholar 

  • Chau MD, Gao J, Yang Q, Wu Z, Gromada J (2010) Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Nat acad Sci USA 107:12553–12558. doi:10.1073/pnas.1006962107

    Article  CAS  Google Scholar 

  • Cirillo G et al (2016) Polyphenol conjugates and human health: a perspective review. Crit Rev Food Sci Nutr 56:326–337. doi:10.1080/10408398.2012.752342

    Article  CAS  Google Scholar 

  • Crespo J et al (2001) Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 34:1158–1163. doi:10.1053/jhep.2001.29628

    Article  CAS  Google Scholar 

  • Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114:842–845

    Article  CAS  Google Scholar 

  • Di Noia MA, Van Driesche S, Palmieri F, Yang LM, Quan S, Goodman AI, Abraham NG (2006) Heme oxygenase-1 enhances renal mitochondrial transport carriers and cytochrome C oxidase activity in experimental diabetes. J Biol Chem 281:15687–15693. doi:10.1074/jbc.M510595200

    Article  Google Scholar 

  • Garcia-Ruiz I, Solis-Munoz P, Fernandez-Moreira D, Munoz-Yague T, Solis-Herruzo JA (2015) In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis. Dis Mod Mech 8:183–191. doi:10.1242/dmm.018234

    Article  Google Scholar 

  • Gerhart-Hines Z et al (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26:1913–1923. doi:10.1038/sj.emboj.7601633

    Article  CAS  Google Scholar 

  • Gomez-Lechon MJ, Donato MT, Martinez-Romero A, Jimenez N, Castell JV, O’Connor JE (2007) A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact 165:106–116. doi:10.1016/j.cbi.2006.11.004

    Article  CAS  Google Scholar 

  • Hijona E, Hijona L, Arenas JI, Bujanda L (2010) Inflammatory mediators of hepatic steatosis. Mediat Inflamm 2010:837419. doi:10.1155/2010/837419

    Article  Google Scholar 

  • Hirschey MD, Zhao Y (2015) Metabolic regulation by lysine malonylation succinylation, and glutarylation. Mol Cell Proteom 14:2308–2315. doi:10.1074/mcp.R114.046664

    Article  CAS  Google Scholar 

  • Hotamisligil GS, Bernlohr DA (2015) Metabolic functions of FABPs–mechanisms and therapeutic implications nature reviews. Endocrinology 11:592–605. doi:10.1038/nrendo.2015.122

    CAS  Google Scholar 

  • Javitt NB (1990) Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids FASEB journal: official publication of the Federation of American Societies for. Exp Biol 4:161–168

    CAS  Google Scholar 

  • Jeong HS et al (2016) Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. Complement Altern Med 16:239. doi:10.1186/s12906-016-1181-2

    Article  Google Scholar 

  • Lee-Huang S, Zhang L, Huang PL, Chang YT, Huang PL (2003) Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochem Biophys Res Commun 307:1029–1037

    Article  CAS  Google Scholar 

  • Leibiger IB, Berggren PO (2006) Sirt1: a metabolic master switch that modulates lifespan. Nat Med 12:34–36. doi:10.1038/nm0106-34

    Article  CAS  Google Scholar 

  • Li Volti G et al (2011) Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovasc Diabetol 10:62. doi:10.1186/1475-2840-10-62

    Article  CAS  Google Scholar 

  • Li M, Guo K, Vanella L, Taketani S, Adachi Y, Ikehara S (2015) Stem cell transplantation upregulates Sirt1 and antioxidant expression, ameliorating fatty liver in type 2 diabetic mice. Int J Biol Sci 11:472–481. doi:10.7150/ijbs.10809

    Article  CAS  Google Scholar 

  • Lockyer S, Corona G, Yaqoob P, Spencer JP, Rowland I (2015) Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: a randomised, double-blind, placebo-controlled, cross-over trial. Br J Nutr 114:75–83. doi:10.1017/S0007114515001269

    Article  CAS  Google Scholar 

  • Ma KL, Ruan XZ, Powis SH, Chen Y, Moorhead JF, Varghese Z (2008) Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice. Hepatology 48:770–781. doi:10.1002/hep.22423

    Article  CAS  Google Scholar 

  • Malaguarnera M et al (2011) Oral acetyl-L-carnitine therapy reduces fatigue in overt hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr 93:799–808. doi:10.3945/ajcn.110.007393

    Article  CAS  Google Scholar 

  • Manna C, Migliardi V, Golino P, Scognamiglio A, Galletti P, Chiariello M, Zappia V (2004) Oleuropein prevents oxidative myocardial injury induced by ischemia and reperfusion. J Nutr Biochem 15:461–466. doi:10.1016/j.jnutbio.2003.12.010

    Article  CAS  Google Scholar 

  • Mantzaris MD, Tsianos EV, Galaris D (2011) Interruption of triacylglycerol synthesis in the endoplasmic reticulum is the initiating event for saturated fatty acid-induced lipotoxicity in liver cells. FEBS J 278:519–530. doi:10.1111/j.1742-4658.2010.07972.x

    Article  CAS  Google Scholar 

  • Marchesini G et al (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107:450–455

    Article  CAS  Google Scholar 

  • Mariani S et al (2015) Plasma levels of SIRT1 associate with non-alcoholic fatty liver disease in obese patients. Endocrine 49:711–716. doi:10.1007/s12020-014-0465-x

    Article  CAS  Google Scholar 

  • Marino M, Acconcia F, Bresciani F, Weisz A, Trentalance A (2002) Distinct nongenomic signal transduction pathways controlled by 17beta-estradiol regulate DNA synthesis and cyclin D(1) gene transcription in HepG2 cells. Mol Biol Cell 13:3720–3729. doi:10.1091/mbc.E02-03-0153

    Article  CAS  Google Scholar 

  • Miles EA, Zoubouli P, Calder PC (2005) Differential anti-inflammatory effects of phenolic compounds from extra virgin olive oil identified in human whole blood cultures. Nutrition 21:389–394. doi:10.1016/j.nut.2004.06.031

    Article  CAS  Google Scholar 

  • Nassir F, Ibdah JA (2016) Sirtuins and nonalcoholic fatty liver disease. World J Gastroenterol 22:10084–10092. doi:10.3748/wjg.v22.i46.10084

    Article  Google Scholar 

  • Onnerhag K, Nilsson PM, Lindgren S (2014) Increased risk of cirrhosis and hepatocellular cancer during long-term follow-up of patients with biopsy-proven NAFLD. Scand J Gastroenterol 49:1111–1118. doi:10.3109/00365521.2014.934911

    Article  Google Scholar 

  • Pais R, Pascale A, Fedchuck L, Charlotte F, Poynard T, Ratziu V (2011) Progression from isolated steatosis to steatohepatitis and fibrosis in nonalcoholic fatty liver disease. Clin Res Hepatol Gastroenterol 35:23–28

    Article  CAS  Google Scholar 

  • Pittala V, Vanella L, Salerno L, Romeo G, Marrazzo A, Di Giacomo C, Sorrenti V (2017) Effects of polyphenolic derivatives on heme oxygenase-system in metabolic dysfunctions. Curr Med Chem. doi:10.2174/0929867324666170616110748

    Google Scholar 

  • Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metabol 9:327–338. doi:10.1016/j.cmet.2009.02.006

    Article  CAS  Google Scholar 

  • Rodgers JT, Puigserver P (2007) Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Nat Acad Sci USA 104:12861–12866. doi:10.1073/pnas.0702509104

    Article  CAS  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118. doi:10.1038/nature03354

    Article  CAS  Google Scholar 

  • Rui L (2014) Energy metabolism in the liver. Compr Physiol 4:177–197. doi:10.1002/cphy.c130024

    Article  Google Scholar 

  • Rusu E et al (2015) Medical nutrition therapy in non-alcoholic fatty liver disease–a review of literature. J Med life 8:258–262

    CAS  Google Scholar 

  • Shen Y, Song SJ, Keum N, Park T (2014) Olive leaf extract attenuates obesity in high-fat diet-fed mice by modulating the expression of molecules involved in adipogenesis and thermogenesis. Evid based Complement Alternat Med 2014:971890. doi:10.1155/2014/971890

    Google Scholar 

  • Sodhi K et al (2015) Fructose mediated non-alcoholic fatty liver is attenuated by HO-1-SIRT1 module in murine hepatocytes and mice fed a high fructose diet. PLoS ONE 10:e0128648. doi:10.1371/journal.pone.0128648

    Article  Google Scholar 

  • Stienstra R, Mandard S, Patsouris D, Maass C, Kersten S, Muller M (2007) Peroxisome proliferator-activated receptor alpha protects against obesity-induced hepatic inflammation. Endocrinology 148:2753–2763. doi:10.1210/en.2007-0014

    Article  CAS  Google Scholar 

  • Talhaoui N, Gomez-Caravaca AM, Roldan C, Leon L, De la Rosa R, Fernandez-Gutierrez A, Segura-Carretero A (2015) Chemometric analysis for the evaluation of phenolic patterns in olive leaves from six cultivars at different growth stages. J Agric Food Chem 63:1722–1729. doi:10.1021/jf5058205

    Article  CAS  Google Scholar 

  • Tibullo D et al (2013) Nuclear translocation of heme oxygenase-1 confers resistance to imatinib in chronic myeloid leukemia cells. Curr Pharm Des 19:2765–2770

    Article  CAS  Google Scholar 

  • Tobita T et al (2016) SIRT1 Disruption in human fetal hepatocytes leads to increased accumulation of glucose and lipids. PLoS ONE 11:e0149344. doi:10.1371/journal.pone.0149344

    Article  Google Scholar 

  • Tokushige K, Hashimoto E, Tsuchiya N, Kaneda H, Taniai M, Shiratori K (2005) Clinical significance of soluble TNF receptor in Japanese patients with non-alcoholic steatohepatitis. Alcohol Clin Exp Res 29:298S–303S

    Article  CAS  Google Scholar 

  • Vanella L et al (2013) Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Stem cell Res Ther 4:28. doi:10.1186/scrt176

    Article  CAS  Google Scholar 

  • Vázquez AJC, Janer ML (1973) Determinación de los polifenoles totales del aceite de oliva. Grasas Aceites 24:350–355

    Google Scholar 

  • Wainstein J, Ganz T, Boaz M, Bar Dayan Y, Dolev E, Kerem Z, Madar Z (2012) Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J Med Food 15:605–610. doi:10.1089/jmf.2011.0243

    Article  Google Scholar 

  • Yoon L, Liu YN, Park H, Kim HS (2015) Olive leaf extract elevates hepatic PPAR alpha mRNA expression and improves serum lipid profiles in ovariectomized rats. J Med Food 18:738–744. doi:10.1089/jmf.2014.3287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Vanella.

Additional information

Ignazio Barbagallo and Giovanni Li Volti contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbagallo, I., Li Volti, G., Raffaele, M. et al. The effects of olive leaf extract from a Sicilian cultivar in an experimental model of hepatic steatosis. Rend. Fis. Acc. Lincei 28, 643–650 (2017). https://doi.org/10.1007/s12210-017-0649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-017-0649-4

Keywords

Navigation