[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Alginate-casein microspheres as bioactive vehicles for nutrients

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The aim of this work was to develop an alginate-casein composite microsphere as a bioactive vehicle for oral administration of nutrients by a simple extrusion dripping method. Riboflavin was selected as a model drug, and the microencapsulation efficiency was raised to 97.94% after optimizing the preparation conditions by response surface methodology. In vitro release studies showed that riboflavin was released completely from alginate-casein microspheres in simulated intestinal fluids. Meanwhile, the morphology, structure and interaction between alginate and casein were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Augustin M, Sanguansri L. Encapsulation of Bioactives [M]. Food Materials Science, Springer, 2008: 577–601.

    Google Scholar 

  2. Fang Z, Bhandari B. Encapsulation of polyphenols-A review [J]. Trends in Food Science & Technology, 2010, 21(10): 510–523.

    Article  Google Scholar 

  3. Dai Z, Sun D, Guo Y. Preparation of cety-chitosan nanoparticles as carriers for paracetamol [J]. Transactions of Tianjin University, 2002, 8(4): 235–238.

    Google Scholar 

  4. Chen L, Remondetto G E, Subirade M. Food protein-based materials as nutraceutical delivery systems [J]. Trends in Food Science & Technology, 2006, 17(5): 272–283.

    Article  Google Scholar 

  5. Augustin M A, Hemar Y. Nano-and micro-structured assemblies for encapsulation of food ingredients [J]. Chemical Society Reviews, 2009, 38(4): 902–912.

    Article  Google Scholar 

  6. Nesterenko A, Alric I, Silvestre F. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness [J]. Industrial Crops and Products, 2013, 42(3): 469–479.

    Article  Google Scholar 

  7. Feng Y, Fang Z, Wang H. Synthesis and characterization of degraded gelatin grafted poly(?-caprolactone) copolymers [J]. Transactions of Tianjin University, 2013, 19(3): 182–187.

    Article  Google Scholar 

  8. Zhong D, Huang X, Yang H. New insights into viscosity abnormality of sodium alginate aqueous solution [J]. Carbohydrate Polymers, 2010, 81(4): 948–952.

    Article  Google Scholar 

  9. Lim F, Sun A M. Microencapsulated islets as bioartificial endocrine pancreas [J]. Science, 1980, 210(4472): 908–910.

    Article  Google Scholar 

  10. George M, Abraham T E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-A review [J]. Journal of Controlled Release, 2006, 114(1): 1–14.

    Article  Google Scholar 

  11. Ghidoni I, Chlapanidas T, Bucco M. Alginate cell encapsulation: New advances in reproduction and cartilage regenerative medicine [J]. Cytotechnology, 2008, 58(1): 49–56.

    Article  Google Scholar 

  12. Homayouni A, Azizi A, Ehsani M. Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream [J]. Food Chemistry, 2008, 111(1): 50–55.

    Article  Google Scholar 

  13. Taqieddin E, Amiji M. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules [J]. Biomaterials, 2004, 25(10): 1937–1945.

    Article  Google Scholar 

  14. Waterhouse G I, Wang W, Sun-Waterhouse D. Stability of canola oil encapsulated by co-extrusion technology: Effect of quercetin addition to alginate shell or oil core [J]. Food Chemistry, 2014, 142(1): 27–38.

    Article  Google Scholar 

  15. Gåserød O, Jolliffe I G, Hampson F C. The enhancement of the bioadhesive properties of calcium alginate gel beads by coating with chitosan [J]. International Journal of Pharmaceutics, 1998, 175(2): 237–246.

    Article  Google Scholar 

  16. López Córdoba A, Deladino L, Martino M. Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants [J]. Carbohydrate Polymers, 2013, 95(1): 315–323.

    Article  Google Scholar 

  17. Wang K, He Z. Alginate-konjac glucomannan-chitosan beads as controlled release matrix [J]. International Journal of Pharmaceutics, 2002, 244(1): 117–126.

    Article  Google Scholar 

  18. Mei L, Xie R, Yang C. Bio-inspired mini-eggs with pHresponsive membrane for enzyme immobilization [J]. Journal of Membrane Science, 2013, 429(15): 313–322.

    Article  Google Scholar 

  19. Chen L, Subirade M. Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds [J]. Biomaterials, 2006, 27(26): 4646–4654.

    Article  Google Scholar 

  20. Elzoghby A O, Abo El-Fotoh W S, Elgindy N A. Caseinbased formulations as promising controlled release drug delivery systems [J]. Journal of Controlled Release, 2011, 153(3): 206–216.

    Article  Google Scholar 

  21. Zhang X, Chang M, Ma Z. Comparison between MIR and NIR spectroscopic techniques for the determination of fat and protein contents in milk [J]. Transactions of Tianjin University, 2007, 13(5): 375–378.

    Google Scholar 

  22. De Kruif C, Holt C. Casein Micelle Structure, Functions and Interactions [M]. Advanced Dairy Chemistry-1 Proteins, Springer, 2003: 233–276.

    Google Scholar 

  23. Song F, Zhang L M, Yang C. Genipin-crosslinked casein hydrogels for controlled drug delivery [J]. International Journal of Pharmaceutics, 2009, 373(1): 41–47.

    Article  MathSciNet  Google Scholar 

  24. Semo E, Kesselman E, Danino D. Casein micelle as a natural nano-capsular vehicle for nutraceuticals [J]. Food Hydrocolloids, 2007, 21(5): 936–942.

    Article  Google Scholar 

  25. Kosaraju S L, Weerakkody R, Augustin M A. In-vitro evaluation of hydrocolloid-based encapsulated fish oil [J]. Food Hydrocolloids, 2009, 23(5): 1413–1419.

    Article  Google Scholar 

  26. Pan K, Zhong Q, Baek S J. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules [J]. Journal of Agricultural and Food Chemistry, 2013, 61(25): 6036–6043.

    Article  Google Scholar 

  27. Zhang Y, Zhong Q. Encapsulation of bixin in sodium caseinate to deliver the colorant in transparent dispersions [J]. Food Hydrocolloids, 2013, 33(1): 1–9.

    Article  Google Scholar 

  28. Korhonen H, Pihlanto A. Bioactive peptides: New challenges and opportunities for the dairy industry [J]. Australian Journal of Dairy Technology, 2003, 58(2): 129–134.

    Google Scholar 

  29. Wu S, Qi W, Li T. Simultaneous production of multifunctional peptides by pancreatic hydrolysis of bovine casein in an enzymatic membrane reactor via combinational chromatography [J]. Food Chemistry, 2013, 141(3): 2944–2951.

    Article  Google Scholar 

  30. Su R, Qi W, He Z. Pancreatic hydrolysis of bovine casein: Identification and release kinetics of phosphopeptides [J]. Food Chemistry, 2007, 104(1): 276–286.

    Article  Google Scholar 

  31. Ahn J H, Kim Y P, Lee Y M. Optimization of microencapsulation of seed oil by response surface methodology [J]. Food Chemistry, 2008, 107(1): 98–105.

    Article  Google Scholar 

  32. Sutaphanit P, Chitprasert P. Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology [J]. Food Chemistry, 2014, 150(1): 313–320.

    Article  Google Scholar 

  33. He Z, Fang J. Comparative study of response surface designs with errors-in-variables model [J]. Transactions of Tianjin University, 2011, 17(2): 146–150.

    Article  Google Scholar 

  34. Hosseini S M, Hosseini H, Mohammadifar M A. Preparation and characterization of alginate and alginateresistant starch microparticles containing nisin [J]. Carbohydrate Polymers, 2014, 103(15): 573–580.

    Article  Google Scholar 

  35. Khwaldia K, Basta A H, Aloui H. Chitosan-caseinate bilayer coatings for paper packaging materials [J]. Carbohydrate Polymers, 2014, 99(2): 508–516.

    Article  Google Scholar 

  36. Gu F L, Kim J M, Abbas S. Structure and antioxidant activity of high molecular weight Maillard reaction products from casein-glucose [J]. Food Chemistry, 2010, 120(2): 505–511.

    Article  Google Scholar 

  37. Pillay V, Fassihi R. In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract: I. Comparison of pH-responsive drug release and associated kinetics [J]. Journal of Controlled Release, 1999, 59(2): 229–242.

    Article  Google Scholar 

  38. Wise D L. Handbook of Pharmaceutical Controlled Release Technology [M]. CRC Press, 2000.

    Google Scholar 

  39. Lacerda L, Parize A L, Fávere V. Development and evaluation of pH-sensitive sodium alginate/chitosan microparticles containing the antituberculosis drug rifampicin [J]. Materials Science and Engineering: C, 2014, 39(1): 161–167.

    Article  Google Scholar 

  40. Kitts D. Antioxidant properties of casein-phosphopeptides [J]. Trends in Food Science & Technology, 2005, 16(12): 549–554.

    Article  Google Scholar 

  41. Andrews A, Williams R, Brownsell V. ß-CN-5P and ß-CN-4P components of bovine milk proteose-peptone: Large scale preparation and influence on the growth of cariogenic microorganisms [J]. Food Chemistry, 2006, 96(2): 234–241.

    Article  Google Scholar 

  42. Pizzano R, Nicolai M A, Padovano P. Immunochemical evaluation of bovine ß-casein and its 1-28 phosphopeptide in cheese during ripening [J]. Journal of Agricultural and Food Chemistry, 2000, 48(10): 4555–4560.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qi  (齐 崴).

Additional information

Supported by the National High Technology Research and Development Program of China(“863” Program, No. 2013AA102204), National Natural Science Foundation of China(No. 31071509), program of Ministry of Science and Technology of China(No. 2012YQ090194), Program of Beiyang Young Scholar of Tianjin University(2012), and Program of Introducing Talents of Discipline to Universities of China(No. B06006).

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s12209-015-2692-5.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Zhang, X., Qi, W. et al. Alginate-casein microspheres as bioactive vehicles for nutrients. Trans. Tianjin Univ. 21, 383–391 (2015). https://doi.org/10.1007/s12209-015-2692-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-015-2692-5

Keywords