[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A study on the attention of people with low vision to accessibility guidance signs

  • Original Paper
  • Published:
Journal on Multimodal User Interfaces Aims and scope Submit manuscript

Abstract

The function of accessibility guide signs is to convey information to users. The key to designing accessibility guide signs is to improve the efficiency with which they convey information. In this paper, 16 subjects were recruited to study their attentional status when faced with different forms of accessibility sign design by setting up two sets of comparison tests. The subjects watched six videos containing different sign designs with different lighting effects to compare their attention to the different sign designs. We collected the participants' eye-movement, EEG, and HRV data during the experiment, and the PSSUQ questionnaire was administered. The data showed that subjects could quickly attend to the processed signs but did not show significant differences in brain responses. Among the study variables, there were significant differences in the effects of different light frequencies on subjects' attention. Study results suggest that designers can consider the existing sign designs for public places and add richer visual information to the designs, thus improving the efficiency of information transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bourne RRA et al (2017) Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health 5(9):e888–e897. https://doi.org/10.1016/S2214-109X(17)30293-0

    Article  PubMed  Google Scholar 

  2. Blindness and vision impairment. https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment. Accessed 19 Aug 2022

  3. Maino JH (2001) Low vision and blindness rehabilitation in the VA: inpatient rehabilitation. In: Issues in low vision rehabilitation service delivery, policy, and funding, pp 187–202

  4. Vision impairment and blindness. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. Accessed 22 June 2023.

  5. Matsuda Y, Kawauchi A, Motooka N (2021) Gazing behavior exhibited by people with low vision while navigating streets. J Asian Archit Build Eng 20(4):414–427. https://doi.org/10.1080/13467581.2020.1799798

    Article  Google Scholar 

  6. Burmedi D, Becker S, Heyl V, Wahl H-W, Himmelsbach I (2002) Behavioral consequences of age-related low vision. Vis Impair Res 4(1):15–45. https://doi.org/10.1076/vimr.4.1.15.15633

    Article  Google Scholar 

  7. Bochsler TM, Legge GE, Gage R, Kallie CS (2013) Recognition of ramps and steps by people with low vision. Invest Ophthalmol Vis Sci 54(1):288. https://doi.org/10.1167/iovs.12-10461

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ludt R, Goodrich GL (2002) Change in visual perceptual detection distances for low vision travelers as a result of dynamic visual assessment and training. J Vis Impair Blind 96(1):7–21. https://doi.org/10.1177/0145482X0209600103

    Article  Google Scholar 

  9. Arditi A (2017) Rethinking ADA signage standards for low-vision accessibility. J Vis 17(5):8. https://doi.org/10.1167/17.5.8

    Article  PubMed  PubMed Central  Google Scholar 

  10. World Health Organization (2007) Global age-friendly cities: a guide. Accessed 26 Jun 2023. [Online]. Available: https://apps.who.int/iris/handle/10665/43755

  11. Rogulj K, Jajac N (2018) Achieving a construction barrier-free environment: decision support to policy selection. J Manag Eng 34(4):04018020. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000618

    Article  Google Scholar 

  12. Kyeremeh S, Mashige KP (2021) Availability of low vision services and barriers to their provision and uptake in Ghana: practitioners’ perspectives. Afr Health Sci 21(2):896–903. https://doi.org/10.4314/ahs.v21i2.51

    Article  PubMed  PubMed Central  Google Scholar 

  13. Building and Construction Authority, UNIVERSAL DESIGN GUIDE for PUBLIC PLACES (2016)

  14. Mocanu B, Tapu R, Zaharia T (2018) DEEP-SEE FACE: a mobile face recognition system dedicated to visually impaired people. IEEE Access 6:51975–51985. https://doi.org/10.1109/ACCESS.2018.2870334

    Article  Google Scholar 

  15. DunaiDunai L, Chillarón Pérez M, Peris-Fajarnés G, LenguaLengua I (2017) Euro banknote recognition system for blind people. Sensors 17(12):184. https://doi.org/10.3390/s17010184

    Article  ADS  Google Scholar 

  16. Park C, Cho SW, Baek NR, Choi J, Park KR (2020) Deep feature-based three-stage detection of banknotes and coins for assisting visually impaired people. IEEE Access 8:184598–184613. https://doi.org/10.1109/ACCESS.2020.3029526

    Article  Google Scholar 

  17. Aladren A, Lopez-Nicolas G, Puig L, Guerrero JJ (2016) Navigation assistance for the visually impaired using RGB-D sensor with range expansion. IEEE Syst J 10(3):922–932. https://doi.org/10.1109/JSYST.2014.2320639

    Article  ADS  Google Scholar 

  18. Apostoaie MG, Baritz M, Repanovici A, Barbu DM, Lazăr AM, Bodi G (2023) Visual aid systems from smart city to improve the life of people with low vision. Sustainability 15(8):6852. https://doi.org/10.3390/su15086852

    Article  Google Scholar 

  19. MaaS: A Solution for Tomorrow’s Mobility. https://www.inclusivecitymaker.com/maas-inclusive-mobility-trip-planner/. Accessed 27 June 2023

  20. Wayfindr—Accessible indoor audio navigation. Wayfindr. https://www.wayfindr.net/. Accessed 27 June 2023

  21. Joseph SL et al (2015) Being aware of the world: toward using social media to support the blind with navigation. IEEE Trans Hum-Mach Syst 45(3):399–405. https://doi.org/10.1109/THMS.2014.2382582

    Article  Google Scholar 

  22. Bousbia-Salah M, Bettayeb M, Larbi A (2011) A navigation aid for blind people. J Intell Robot Syst 64(3–4):387–400. https://doi.org/10.1007/s10846-011-9555-7

    Article  Google Scholar 

  23. Islam MM, Sadi MS, Zamli KZ, Ahmed MM (2019) Developing walking assistants for visually impaired people: a review. IEEE Sens J 19(8):2814–2828. https://doi.org/10.1109/JSEN.2018.2890423

    Article  ADS  Google Scholar 

  24. Jafri R, Campos RL, Ali SA, Arabnia HR (2018) Visual and infrared sensor data-based obstacle detection for the visually impaired using the Google project tango tablet development kit and the unity engine. IEEE Access 6:443–454. https://doi.org/10.1109/ACCESS.2017.2766579

    Article  Google Scholar 

  25. Dakopoulos D, Bourbakis NG (2010) Wearable obstacle avoidance electronic travel aids for blind: a survey. IEEE Trans Syst Man Cybern C 40(1):25–35. https://doi.org/10.1109/TSMCC.2009.2021255

    Article  Google Scholar 

  26. Elmannai W, Elleithy K (2017) Sensor-based assistive devices for visually-impaired people: current status, challenges, and future directions. Sensors 17(3):565. https://doi.org/10.3390/s17030565

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Bhowmick A, Hazarika SM (2017) An insight into assistive technology for the visually impaired and blind people: state-of-the-art and future trends. J Multimodal User Interfaces 11(2):149–172. https://doi.org/10.1007/s12193-016-0235-6

    Article  Google Scholar 

  28. Fernandes H, Costa P, Filipe V, Paredes H, Barroso J (2020) Correction to: a review of assistive spatial orientation and navigation technologies for the visually impaired. Univ Access Inf Soc 19(1):211–211. https://doi.org/10.1007/s10209-017-0574-4

    Article  Google Scholar 

  29. Cheraghi SA, Namboodiri V, Walker L (2017) GuideBeacon: Beacon-based indoor wayfinding for the blind, visually impaired, and disoriented. In: 2017 IEEE international conference on pervasive computing and communications (PerCom). https://doi.org/10.1109/PERCOM.2017.7917858

  30. Chaccour K, Badr G (2016) Computer vision guidance system for indoor navigation of visually impaired people. In: 2016 IEEE 8th international conference on intelligent systems (IS). https://doi.org/10.1109/IS.2016.7737460

  31. Ko E, Kim E (2017) A vision-based wayfinding system for visually impaired people using situation awareness and activity-based instructions. Sensors 17(8):1882. https://doi.org/10.3390/s17081882

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. KimKim (2020) A study on user satisfaction of information facilities for the visually impaired. J Korea Inst Healthc Archit 26(2):19–30. https://doi.org/10.15682/jkiha.2020.26.2.19

    Article  Google Scholar 

  33. Beverley CA, Bath PA, Barber R (2007) Can two established information models explain the information behaviour of visually impaired people seeking health and social care information? J Doc 63(1):9–32. https://doi.org/10.1108/00220410710723867

    Article  Google Scholar 

  34. Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96(5):614–618. https://doi.org/10.1136/bjophthalmol-2011-300539

    Article  PubMed  Google Scholar 

  35. Moyano DB, Moyano SB, Lopez MG, Aznal AS, Lezcano RAG (2020) Nominal risk analysis of the blue light from LED luminaires in indoor lighting design. Optik 223:165599. https://doi.org/10.1016/j.ijleo.2020.165599

    Article  ADS  Google Scholar 

  36. Makin ADJ, Bertamini M, Jones A, Holmes T, Zanker JM (2016) A gaze-driven evolutionary algorithm to study aesthetic evaluation of visual symmetry. i-Perception 7(2):204166951663743. https://doi.org/10.1177/2041669516637432

    Article  Google Scholar 

  37. O’Hare L, Goodwin P (2018) ERP responses to images of abstract artworks, photographs of natural scenes, and artificially created uncomfortable images. J Cogn Psychol 30(5–6):627–641. https://doi.org/10.1080/20445911.2018.1499657

    Article  Google Scholar 

  38. Fuentes JP, Villafaina S, Collado-Mateo D, de la Vega R, Gusi N, Clemente-Suárez VJ (2018) Use of biotechnological devices in the quantification of psychophysiological workload of professional chess players. J Med Syst. https://doi.org/10.1007/s10916-018-0890-0

    Article  PubMed  Google Scholar 

  39. Villafaina S, Collado-Mateo D, Cano-Plasencia R, Gusi N, Fuentes JP (2018) Electroencephalographic response of chess players in decision-making processes under time pressure. Physiol Behav 198:140–143. https://doi.org/10.1016/j.physbeh.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  40. Yarbus AL (1967) Eye movements and vision. Springer, Boston, MA, US. https://doi.org/10.1007/978-1-4899-5379-7

    Book  Google Scholar 

  41. Bol N, van Weert JCM, Loos EF, Romano Bergstrom JC, Bolle S, Smets EMA (2016) How are online health messages processed? using eye tracking to predict recall of information in younger and older adults. J Health Commun 21(4):387–396. https://doi.org/10.1080/10810730.2015.1080327

    Article  PubMed  Google Scholar 

  42. Kiefer P, Straub F, Raubal M (2012) Location-aware mobile eye-tracking for the explanation of wayfinding behavior

  43. Schrom-Feiertag H, Settgast V, Seer S (2017) Evaluation of indoor guidance systems using eye tracking in an immersive virtual environment. Spat Cogn Comput 17(1–2):163–183. https://doi.org/10.1080/13875868.2016.1228654

    Article  Google Scholar 

  44. Guo F, Ding Y, Liu W, Liu C, Zhang X (2016) Can eye-tracking data be measured to assess product design?: visual attention mechanism should be considered. Int J Ind Ergon 53:229–235. https://doi.org/10.1016/j.ergon.2015.12.001

    Article  Google Scholar 

  45. Dogan KM, Suzuki H, Gunpinar E (2018) Eye tracking for screening design parameters in adjective-based design of yacht hull. Ocean Eng 166:262–277. https://doi.org/10.1016/j.oceaneng.2018.08.026

    Article  Google Scholar 

  46. Nunez MD, How attention influences perceptual decision making: single-trial EEG correlates of drift-diffusion model parameters. J Math Psychol 14

  47. Zhou Z, Cheng J, Wei W, Lee L (2021) Validation of evaluation model and evaluation indicators comprised Kansei Engineering and eye movement with EEG: an example of medical nursing bed. Microsyst Technol 27(4):1317–1333. https://doi.org/10.1007/s00542-018-4235-1

    Article  CAS  Google Scholar 

  48. Kim M-K, Kim M, Oh E, Kim S-P (2013) A review on the computational methods for emotional state estimation from the human EEG. Comput Math Methods Med 2013:1–13. https://doi.org/10.1155/2013/573734

    Article  MathSciNet  Google Scholar 

  49. Fuentes-García JP, Pereira T, Castro MA, Carvalho Santos A, Villafaina S (2019) Heart and brain responses to real versus simulated chess games in trained chess players: a quantitative EEG and HRV study. IJERPH 16(24):5021. https://doi.org/10.3390/ijerph16245021

    Article  PubMed  PubMed Central  Google Scholar 

  50. Inanaga K (1998) Frontal midline theta rhythm and mental activity. Psychiatry Clin Neurosci 52(6):555–566. https://doi.org/10.1046/j.1440-1819.1998.00452.x

    Article  CAS  PubMed  Google Scholar 

  51. Ishii R et al (2014) Frontal midline theta rhythm and gamma power changes during focused attention on mental calculation: an MEG beamformer analysis. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2014.00406

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jacinto LR, Reis JS, Dias NS, Cerqueira JJ, Correia JH, Sousa N (2013) Stress affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization. Front Behav Neurosci. https://doi.org/10.3389/fnbeh.2013.00127

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fuentes-García JP, Pereira T, Castro MA, Carvalho Santos A, Villafaina S (2019) Psychophysiological stress response of adolescent chess players during problem-solving tasks. Physiol Behav 209:112609. https://doi.org/10.1016/j.physbeh.2019.112609

    Article  CAS  PubMed  Google Scholar 

  54. Moore N (2000) The information needs of visually impaired people: a review of research for RNIB. Royal National Institute for the Blind, London

    Google Scholar 

  55. Katemake P et al (2019) Influence of LED-based assistive lighting solutions on the autonomous mobility of low vision people. Build Environ 157:172–184. https://doi.org/10.1016/j.buildenv.2019.04.026

    Article  Google Scholar 

  56. Huang Z, Limke J, Kong J (2017) Investigating one-handed and two-handed inter-device interaction. J Vis Lang Comput 42:1–12. https://doi.org/10.1016/j.jvlc.2017.07.001

    Article  CAS  Google Scholar 

  57. Wang Y, Song F, Liu Y, Li Y, Zhang Z (2020) Color scheme compensatory evaluation method based on eye movement tracking technology. IEEE Access 8:214240–214253. https://doi.org/10.1109/ACCESS.2020.3040495

    Article  Google Scholar 

  58. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  59. Jung T-P, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2000) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111(10):1745–1758. https://doi.org/10.1016/S1388-2457(00)00386-2

    Article  CAS  PubMed  Google Scholar 

  60. Sauro J (2012) Quantifying the user experience: practical statistics for user research. Quantifying the user experience: practical statistics for user research. Accessed 24 Aug 2022. [Online]. Available: https://xueshu.baidu.com/usercenter/paper/show?paperid=3eda3901748243d61b00bc6e97e52878&site=xueshu_se

  61. AltinGumussoy C, Pekpazar A, Esengun M, Bayraktaroglu AE, Ince G (2022) Usability evaluation of TV interfaces: subjective evaluation Vs. objective evaluation. Int J Hum-Comput Interact 38(7):661–679. https://doi.org/10.1080/10447318.2021.1960093

    Article  Google Scholar 

  62. Morita PP et al (2016) The usability of ventilators: a comparative evaluation of use safety and user experience. Crit Care. https://doi.org/10.1186/s13054-016-1431-1

    Article  PubMed  PubMed Central  Google Scholar 

  63. Harode A, Ensafi M, Thabet W (2022) Linking BIM to power BI and HoloLens 2 to support facility management: a case study approach. Buildings 12(6):852. https://doi.org/10.3390/buildings12060852

    Article  Google Scholar 

  64. Llanos K et al (2022) Prototipo de un dispositivo para la medición automática de señales fisiológicas para asistir al diagnóstico y seguimiento de pacientes con COVID-19. ings 27:49–58. https://doi.org/10.17163/ings.n27.2022.05

    Article  Google Scholar 

  65. Cappelletti M, Lee HL, Freeman ED, Price CJ (2010) The role of right and left parietal lobes in the conceptual processing of numbers. J Cogn Neurosci 22(2):331–346. https://doi.org/10.1162/jocn.2009.21246

    Article  PubMed  PubMed Central  Google Scholar 

  66. Anllo-Vento L, Hillyard SA (1996) Selective attention to the color and direction of moving stimuli: electrophysiological correlates of hierarchical feature selection. Percept Psychophys 58(2):191–206. https://doi.org/10.3758/BF03211875

    Article  CAS  PubMed  Google Scholar 

  67. Weintraub DJ (1993) The logic of misperceived distance (or location) theories of the Poggendorff illusion. Percept Psychophys 53(2):231–238. https://doi.org/10.3758/BF03211733

    Article  CAS  PubMed  Google Scholar 

  68. Rossi AF, Pessoa L, Desimone R, Ungerleider LG (2009) The prefrontal cortex and the executive control of attention. Exp Brain Res 192(3):489–497. https://doi.org/10.1007/s00221-008-1642-z

    Article  PubMed  Google Scholar 

  69. Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nat Neurosci 3(3):284–291. https://doi.org/10.1038/72999

    Article  CAS  PubMed  Google Scholar 

  70. K S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23(1):315–341. https://doi.org/10.1146/annurev.neuro.23.1.315

    Article  Google Scholar 

  71. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215. https://doi.org/10.1038/nrn755

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Kingfar project team for providing technical assistance with the research and supporting the use of the ErgoLAB Man-Machine-Environment Testing Cloud Platform and related scientific research equipment.

Funding

This study was supported by the “Scientific Research Support” project provided by Kingfar International Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by the ethics committee of Hubei university of Technology (approval no. HBUT20230072). We certify that the study was performed in accordance with the 1964 declaration of HELSINKI and later amendments. All subjects completed an informed consent form prior to participation in the experiment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Zhang, B., Sun, R. et al. A study on the attention of people with low vision to accessibility guidance signs. J Multimodal User Interfaces 18, 87–101 (2024). https://doi.org/10.1007/s12193-023-00417-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12193-023-00417-6

Keywords

Navigation