[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Slack-based generalized Tchebycheff norm scalarization approaches for solving multiobjective optimization problems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this research, we propose two scalarization techniques for solving multiobjective optimization problems (MOPs). Based on the generalized Tchebycheff norm, the achieved scalarized approaches are provided by applying slack and surplus variables. We obtain results related to the presented approaches by varying the range of parameters. These results give an overview of the relationships between (weakly, properly) Pareto optimal solutions of the MOP and optimal solutions of the presented scalarized problems. We remark that all the provided theorems do not require any convexity assumption for objective functions. The main advantage of the generalized Tchebycheff norm approach is that, unlike most scalarization approaches, there is no gap between necessary and sufficient conditions for (weak, proper) Pareto optimality. Moreover, this approach, in different results, shows necessary and sufficient conditions for Pareto optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Akbari, F., Ghaznavi, M., Khorram, E.: A revised Pascoletti–Serafini scalarization method for multiobjective optimization problems. J. Optim. Theory Appl. 178, 560–590 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Askarirobati, G.H., Hashemi, A., Heydari, A.: Solving multiobjective optimal control problems using an improved scalarization method. IMA J. Math. Control. Inf. 37(4), 1524–1547 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonz, J.: Application of a multi-objective multi traveling salesperson problem with time windows. Public Transp. 13, 35–57 (2021)

    Article  Google Scholar 

  4. Burachik, R.S., Kaya, C.Y., Rizvi, M.M.: A new scalarization technique to approximate Pareto fronts of problems with disconnected feasible sets. J. Optim. Theory Appl. 162(2), 428–446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Choo, E.U., Atkins, D.R.: Proper efficiency in nonconvex multicriteria programming. Math. Oper. Res. 8, 467–470 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chugh, T.: Scalarizing functions in Bayesian multiobjective optimization. In: IEEE Congress on Evolutionary Computation (CEC), Glasgow, United Kingdom, pp. 1–8 (2020)

  7. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multiobjective Problems. Genetic Algorithms and Evolutionary Computation Series, Springer, New York (2007)

    MATH  Google Scholar 

  8. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization, Wiley, Chichester (2001)

    MATH  Google Scholar 

  9. Drake, J.H., Starkey, A., Owusu, G., Burke, E.K.: Multiobjective evolutionary algorithms for strategic deployment of resources in operational units. Eur. J. Oper. Res. 282(2), 729–740 (2020)

    Article  MATH  Google Scholar 

  10. Dutta, J., Kaya, C.Y.: A new scalarization and numerical method for constructing the weak Pareto front of multi-objective optimization problems. Optimization 60, 1091–1104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  12. Ehrgott, M., Holder, A.: Operations research methods for optimization in radiation oncology. J. Radiat. Oncol. Inform. 6(1), 1–41 (2017)

    Article  Google Scholar 

  13. Ehrgott, M., Ruzika, S.: Improved \(\epsilon \)-constraint method for multiobjective programming. J. Optim. Theory Appl. 138, 375–396 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  15. Engau, A.: Proper efficiency and tradeoffs in multiple criteria and stochastic optimization. Math. Oper. Res. 42(1), 119–134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. El Sayed, M.A., Abo-Sinna, M.A.: A novel approach for fully intuitionistic fuzzy multi-objective fractional transportation problem. Alex. Eng. J. 60, 1447–1463 (2021)

    Article  Google Scholar 

  17. El Sayed, M.A., Baky, I.A., Singh, P.: A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision making problem. Opsearch 57(4), 1374–1403 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. El Sayed, M.A., Farahat, F.A., Elsisy, M.A.: A novel interactive approach for solving uncertain bi-level multi-objective supply chain model. Comput. Ind. Eng. 169, 108225 (2022)

    Article  Google Scholar 

  19. Elsisy, M.A., El Sayed, M.A., Abo-Elnaga, Y.: A novel algorithm for generating Pareto frontier of bi-level multi-objective rough nonlinear programming problem. Ain Shams Eng. J. 12(2), 2125–2133 (2021)

    Article  Google Scholar 

  20. Ghane-Kanafi, A., Khorram, E.: A new scalarization method for finding the efficient frontier in non-convex multi-objective problems. Appl. Math. Model. 39, 7483–7498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghaznavi, M., Akbari, F., Khorram, E.: Optimality conditions via a unified direction approach for (approximate) efficiency in multiobjective optimization. Optim. Methods Softw. 36, 627–652 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hoseinpoor, N., Ghaznavi, M.: The modified objective-constraint scalarization approach for multiobjective optimization problems. Hacettepe J. Math. Stat. 51(5), 1403–1418 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kequan, Z., Xinmin, Y., Yuanmei, X.: Complete scalarization of multiobjective optimization problems. Sci. Sin. Math. 49 (2019)

  24. Mavrotas, G.: Effective implementation of the \(\epsilon \)-constraint method in multi-objective mathematical programming problems. Appl. Math. Comput. 213, 455–465 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Rastegar, N., Khorram, E.: A combined scalarizing method for multiobjective programming problems. Eur. J. Oper. Res. 236(1), 229–237 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rizvi, M.M.: New optimality conditions for non-linear multiobjective optimization problems and new scalarization techniques for constructing pathological Pareto fronts. Ph.D. thesis, University of South Australia (2013)

  27. Salmei, H., Yaghoobi, M.A.: Improving the min-max method for multiobjective programming. Oper. Res. Lett. 48(4), 480–486 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shahbeyk, S., Soleimani-damaneh, M.: Proper minimal points of nonconvex sets in Banach spaces in terms of the limiting normal cone. Optimization 66(4), 473–489 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shao, L., Ehrgott, M.: Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning. Math. Methods Oper. Res. 68, 257–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shi, J., Song, J., Song, B., Lu, W.F.: Multi-objective optimization design through machine learning for drop-on-demand bioprinting. Engineering 5(3), 586–593 (2019)

    Article  Google Scholar 

  31. Shukla, P.K., Dutta, J., Deb, K., Kesarwani, P.: On a practical notion of Geoffrion proper optimality in multicriteria optimization. Optimization 1–27 (2019)

  32. Soleimani-damaneh, M.: An optimization modelling for string selection in molecular biology using Pareto optimality. Appl. Math. Model. 35, 3887–3892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Soylu, B., Katip, K.: A multiobjective hub-airport location problem for an airline network design. Eur. J. Oper. Res. 277(2), 412–425 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Steuer, R.E., Choo, E.U.: An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26, 326–344 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tejani, G.G., Pholdee, N., Bureerat, S., Prayogo, D., Gandomi, A.H.: Structural optimization using multi-objective modified adaptive symbiotic organisms search. Expert Syst. Appl. 125, 425–441 (2019)

    Article  Google Scholar 

  36. Wang, S.C., Chen, T.C.: Multi-objective competitive location problem with distance-based attractiveness and its best non-dominated solution. Appl. Math. Model. 47, 785–795 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, P., Huang, J., Cui, Z., Xie, L., Chen, J.: A Gaussian error correction multiobjective positioning model with NSGA-II. Concurr. Comput. Pract. Exp. 32(5) (2020)

  38. Wang, S.C., Hsiao, H.C.W., Lin, C.C., Chin, H.H.: Multi-objective wireless sensor network deployment problem with cooperative distance-based sensing coverage. Mob. Netw. Appl. 27, 3–14 (2022)

    Article  Google Scholar 

  39. Xia, Y.M., Yang, X.M., Zhao, K.Q.: A combined scalarization method for multi-objective optimization problems. J. Ind. Manag. Optim. 17(5), 2669–2683 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zarepisheh, M., Uribe Sanchez, A.F., Li, N., Jia, X., Jiang, S.B.: A multicriteria framework with voxel dependent parameters for radiotherapy treatment plan optimization. Med. Phys. 41(4), 1–10 (2014)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghaznavi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseinpoor, N., Ghaznavi, M. Slack-based generalized Tchebycheff norm scalarization approaches for solving multiobjective optimization problems. J. Appl. Math. Comput. 69, 3151–3169 (2023). https://doi.org/10.1007/s12190-023-01871-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01871-x

Keywords

Mathematics Subject Classification

Navigation