[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Monotone positive solution of fourth order boundary value problem with mixed integral and multi-point boundary conditions

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the existence of monotone positive solutions for a fourth order boundary value problem with dependence on the derivative in nonlinearity under integral and multi-point boundary conditions. By applying the fixed point theorem in a cone, some criteria on the existence of positive solutions are acquired. These criteria are given by explicit conditions which are generally weaker than those derived by using the classical norm-type expansion and compression theorem. As applications, three examples are presented to illustrate the validity of our mains results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aftabizadeh, A.R.: Existence and uniqueness theorems for fourth order boundary value problems. J. Math. Anal. Appl. 116(2), 415–426 (1986). https://doi.org/10.1016/S0022-247X(86)80006-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, E., Ma, T.F., Pelicer, M.L.: Monotone positive solutions for a fourth order equation with nonlinear boundary conditions. Nonlinear Anal. 71(9), 3834–3841 (2009). https://doi.org/10.1016/j.na.2009.02.051

    Article  MathSciNet  MATH  Google Scholar 

  3. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordred Banach spaces. SIAM Rev. 18(4), 620–709 (1976). https://doi.org/10.1137/1018114

    Article  MathSciNet  MATH  Google Scholar 

  4. Benaicha, S., Haddouchi, F.: Positive solutions of a nonlinear fourth-order integral boundary value problem. An. Univ. Vest Timiş. Ser. Mat.-Inform. 54(1), 73–86 (2016). https://doi.org/10.1515/awutm-2016-0005

    Article  MathSciNet  Google Scholar 

  5. Bouteraa, N., Benaicha, S., Djourdem, H., Benattia, M.E.: Positive solutions of nonlinear fourth-order two-point boundary value problem with a parameter. Rom. J. Math. Comput. Sci. 8(1), 17–30 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Cabada, A., Cid, J.A., Villamarin, B.M.: Computation of Green’s functions for boundary value problems with Mathematica. Appl. Math. Comput. 219(4), 1919–1936 (2012). https://doi.org/10.1016/j.amc.2012.08.035

    Article  MathSciNet  MATH  Google Scholar 

  7. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  Google Scholar 

  8. Graef, J.R., Kong, L., Kong, Q., Yang, B.: Positive solutions to a fourth order boundary value problem. Results Math. 59(1–2), 141–155 (2011). https://doi.org/10.1007/s00025-010-0068-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Guendouz, C., Haddouchi, F., Benaicha, S.: Existence of positive solutions for a nonlinear third-order integral boundary value problem. Ann. Acad. Rom. Sci. Ser. Math. Appl. 10(2), 314–328 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Haddouchi, F., Benaicha, S.: Positive solutions of a nonlinear three-point eigenvalue problem with integral boundary conditions. Rom. J. Math. Comput. Sci. 5(2), 202–2013 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Hao, X., Xu, N., Liu, L.: Existence and uniqueness of positive solutions for fourth-order \(m\)-point boundary value problems with two parameters. Rocky Mt. J. Math. 43(4), 1161–1180 (2013). https://doi.org/10.1216/RMJ-2013-43-4-1161

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, R., Zhai, C.: Positive solutions for a system of fourth-order differential equations with integral boundary conditions and two parameters. Nonlinear Anal. Model. Control. 23(3), 401–422 (2018). https://doi.org/10.15388/NA.2018.3.7

    Article  MathSciNet  MATH  Google Scholar 

  13. Krasnosel’skii, M.A.: Positive Solutions of Operator Equations. P. Noordhoff, Groningen (1964)

    MATH  Google Scholar 

  14. Lan, K., Webb, J.R.L.: Positive solutions of semilinear differential equations with singularities. J. Differ. Equ. 148(2), 407–421 (1998). https://doi.org/10.1006/jdeq.1998.3475

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, S., Zhai, C.: New existence and uniqueness results for an elastic beam equation with nonlinear boundary conditions. Bound. Value Probl. (2015). https://doi.org/10.1186/s13661-015-0365-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, S., Zhang, X.: Existence and uniqueness of monotone positive solutions for an elastic beam equation with nonlinear boundary conditions. Comput. Math. Appl. 63(9), 1355–1360 (2012). https://doi.org/10.1016/j.camwa.2011.12.065

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Y., Weigho, Z., Chunfang, S.: Monotone and convex positive solutions for fourth-order multi-point boundary value problems. Bound. Value Probl. (2011). https://doi.org/10.1186/1687-2770-2011-21

    Article  MathSciNet  Google Scholar 

  18. Lv, X., Wang, L., Pei, M.: Monotone positive solution of a fourth-order BVP with integral boundary conditions. Bound. Value Probl. (2015). https://doi.org/10.1186/s13661-015-0441-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Sun, J. P., Li, H. B.: Monotone positive solutions of nonlinear third-order BVP with integral boundary conditions. Bound. Value Probl. Art ID 874959 (2010). https://doi.org/10.1155/2010/874959

  20. Webb, J.R.L.: Solutions of nonlinear equations in cones and positive linear operators. J. Lond. Math. Soc. 82(2), 420–436 (2010). https://doi.org/10.1112/jlms/jdq037

    Article  MathSciNet  MATH  Google Scholar 

  21. Webb, J.R.L., Infante, G., Franco, D.: Positive solutions of nonlinear fourth-order boundary value problems with local and nonlocal boundary conditions. Proc. R. Soc. Edinb. Sec. A 138(2), 427–446 (2008). https://doi.org/10.1017/S0308210506001041

    Article  MATH  Google Scholar 

  22. Yao, Q.: Positive solutions of nonlinear beam equations with time and space singularities. J. Math. Anal. Appl. 374(2), 681–692 (2011). https://doi.org/10.1016/j.jmaa.2010.08.056

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhai, C., Jiang, C.: Existence of nontrivial solutions for a nonlinear fourth-order boundary value problem via iterative method. J. Nonlinear Sci. Appl. 9(6), 4295–4304 (2016). https://doi.org/10.22436/jnsa.009.06.71

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhai, C., Jiang, C.: Existence and uniqueness of convex monotone positive solutions for boundary value problems of an elastic beam equation with a parameter. Electron. J. Qual. Theory Differ. Equ. 81, 1–11 (2015). https://doi.org/10.14232/ejqtde.2015.1.81

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhai, C., Jiang, C., Li, S.: Approximating monotone positive solutions of a nonlinear fourth-order boundary value problem via sum operator method. Mediterr. J. Math. 14(2), Paper No. 77 (2017). https://doi.org/10.1007/s00009-017-0844-7

  26. Zhai, C., Song, R., Han, Q.: The existence and the uniqueness of symmetric positive solutions for a fourth-order boundary value problem. Comput. Math. Appl. 62(6), 2639–2647 (2011). https://doi.org/10.1016/j.camwa.2011.08.003

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, X., Ge, W.: Positive solutions for a class of boundary value problems with integral boundary conditions. Comput. Math. Appl. 58(2), 203–215 (2009). https://doi.org/10.1016/j.camwa.2009.04.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for a careful reading of the paper and for his/her valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faouzi Haddouchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddouchi, F., Houari, N. Monotone positive solution of fourth order boundary value problem with mixed integral and multi-point boundary conditions. J. Appl. Math. Comput. 66, 87–109 (2021). https://doi.org/10.1007/s12190-020-01426-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01426-4

Keywords

Mathematics Subject Classification

Navigation