[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Decision-making analysis based on q-rung picture fuzzy graph structures

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this research article, we introduce the notion of q-rung picture fuzzy graph structures (q-RPFGSs). Further, we present the concepts of \(S_{i}\)-strongly regular q-RPFGSs and \(S_{i}\)-uniform q-RPFGSs. We study \(S_{i}\)-bipartite q-RPFGSs and \(S_{i}\)-r-partite q-RPFGSs and investigate some useful results of their \(S_{i}\)-regularity. In addition, we discuss drug trafficking in particular region by using complete 6-partite 15-RPFGS. Moreover, power and economy based dominating relationships of developed countries with rich, progressing and underdeveloped countries are represented by a 4-partite 12-RPFGS. Finally, we describe general procedures of our proposed models by algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Akram, M., Habib, A.: \(q\)-rung picture fuzzy graphs: a creative view on regularity with applications. J. Appl. Math. Comput. 61, 235–280 (2019)

    Article  MathSciNet  Google Scholar 

  2. Akram, M., Shahzadi, G.: A hybrid decision-making model under q-rung orthopair fuzzy Yager aggregation operators. Granul. Comput. (2020). https://doi.org/10.1007/s41066-020-00229-z

    Article  Google Scholar 

  3. Akram, M., Shahzadi, G., Peng, X.: Extension of Einstein geometric operators to multi-attribute decision making under q-rung orthopair fuzzy information. Granul. Comput. (2020). https://doi.org/10.1007/s41066-020-00233-3

    Article  Google Scholar 

  4. Akram, M., Sitara, M.: Certain fuzzy graph structures. J. Appl. Math. Comput. 61(1–2), 25–56 (2019)

    Article  MathSciNet  Google Scholar 

  5. Akram, M., Sitara, M., Saeid, A.B.: Residue product of fuzzy graph structures. J. Multiple Valued Logic Soft Comput. 34(3–4), 365–399 (2020)

    MATH  Google Scholar 

  6. Ali, Z., Mahmood, T.: Maclaurin symmetric mean operators and their applications in the environment of complex \(q\)-rung orthopair fuzzy sets. Comput. Appl. Math. 39, 161 (2020)

    Article  MathSciNet  Google Scholar 

  7. Atanassov, K.: Intuitionistic fuzzy sets: theory and applications. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  Google Scholar 

  8. Coung, B.C.: Picture fuzzy sets-First results, Part 1. In Seminar Neuro-Fuzzy systems with Applications, Preprint 04/2013; Institute of Mathematics, Vietnam Academy of Science and Technology; Hanoi, Vietnam (2013)

  9. Coung, B.C.: Picture fuzzy sets-First results, Part 2. In Seminar Neuro-Fuzzy systems with Applications, Preprint 04/2013; Institute of Mathematics, Vietnam Academy of Science and Technology; Hanoi, Vietnam (2013)

  10. Dinesh, T.: A study on graph structures, incidence algebras and their fuzzy analogues. Ph.D. thesis, Kannur University, Kannur, India (2011)

  11. Gundogdu, F.K., Kahraman, C.: Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. (2018)

  12. Habib, A., Akram, M., Farooq, M.: q-rung orthopair fuzzy competition graphs with application in the soil ecosystem. Mathematics 7(1), 91 (2019)

    Article  MathSciNet  Google Scholar 

  13. Hamidi, M., Saeid, A.B.: Accessible single-valued neutrosophic graphs. J. Appl. Math. Comput. 57, 121–146 (2018)

    Article  MathSciNet  Google Scholar 

  14. Hamidi, M., Saeid, A.B.: Achievable single-valued neutrosophic graphs in Wireless sensor networks. New Math. Nat. Comput. 14(2), 157–185 (2018)

    Article  Google Scholar 

  15. Kauffman, A.: Introduction a la Theorie des Sous-emsembles Flous. Massonet Cie Paris, Paris (1973)

    Google Scholar 

  16. Karunambigai, M.G., Parvathi, R.: Intuitionistic fuzzy graphs. In: Advances in Soft Computing: Computational Intelligence, Theory and Applications, Proceedings of the 9th Fuzzy Days International Conference on Computational Intelligence, vol. 20, pp. 139–150. Springer, Berlin (2006)

  17. Koam, A.N.A., Akram, M., Liu, P.: Decision-making analysis based on fuzzy graph structures. Math. Probl. Eng. (2020). https://doi.org/10.1155/2020/6846257

    Article  MathSciNet  MATH  Google Scholar 

  18. Koczy, L.: Fuzzy graphs in the evaluation and optimization of networks. Fuzzy Sets Syst. 46(3), 307–319 (1992)

    Article  MathSciNet  Google Scholar 

  19. Liu, P., Shahzadi, G., Akram, M.: Specific types of q-rung picture fuzzy Yager aggregation operators for decision-making. Int. J. Comput. Intell. Syst. 13(1), 1072–1091 (2020)

    Article  Google Scholar 

  20. Li, L., Zhang, R., Wang, J., Shang, X., Bhai, K.: A novel approach to multi-attribute group decision-making with \(q\)-rung picture linguistic information. Symmetry 10, 172 (2018)

    Article  Google Scholar 

  21. Luqman, A., Akram, M., Davvaz, B.: q-rung orthopair fuzzy directed hypergraphs: a new model with applications. J. Intell. Fuzzy Syst. 37(3), 3777–3794 (2019)

    Article  Google Scholar 

  22. Luqman, A., Akram, M., Ahmad, N.: Al-Kenani: q-Rung orthopair fuzzy hypergraphs with applications. Mathematics 7(3), 260 (2019)

    Article  Google Scholar 

  23. Mahmood, T., Ali, Z.: Entropy measure and TOPSIS method based on correlation coefficient using complex q-rung orthopair fuzzy information and its application to multi-attribute decision making. Soft. Comput. 39, 1–27 (2020)

    Google Scholar 

  24. Mordeson, J.N., Chang-Shyh, P.: Operations on fuzzy graphs. Inf. Sci. 79(3–4), 159–170 (1994)

    Article  MathSciNet  Google Scholar 

  25. Ramakrishnan, R.V., Dinesh, T.: On generalised fuzzy graph structures. Appl. Math. Sci. 5(4), 173–180 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Ramakrishnan, R.V., Dinesh, T.: On generalised fuzzy graph structures II. Adv. Fuzzy Math. 6(1), 5–12 (2011)

    Article  Google Scholar 

  27. Ramakrishnan, R.V., Dinesh, T.: On generalised fuzzy graph structures III. Bull. Kerala Math. Assoc. 8(1), 57–66 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Sampathkumar, E.: Generalized graph structures. Bull. Kerala Math. Assoc. 3(2), 65–123 (2006)

    MathSciNet  Google Scholar 

  29. Sitara, M., Akram, M., Bhatti, M.Y.: Fuzzy graph structures with application. Mathematics 7(1), 63 (2019)

    Article  MathSciNet  Google Scholar 

  30. Yager, R.R., Abbasov, A.M.: Pythagorean membership grades, complex numbers and decision making. Int. J. Intell. Syst. 28, 436–452 (2013)

    Article  Google Scholar 

  31. Yager, R.R.: Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25, 1222–1230 (2017)

    Article  Google Scholar 

  32. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  33. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3(2), 177–200 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akram.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest regarding the publication of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitara, M., Akram, M. & Riaz, M. Decision-making analysis based on q-rung picture fuzzy graph structures. J. Appl. Math. Comput. 67, 541–577 (2021). https://doi.org/10.1007/s12190-020-01471-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01471-z

Keywords

Navigation