[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Stationary distribution and extinction of a stochastic model of syphilis transmission in an MSM population with telegraph noises

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with the dynamical behaviors of a model of syphilis transmission disturbed by both white noises and telegraph noises. Multiple infections and treatment stages are considered, which include and extend the existing ones. The existence and ergodicity of the stationary distribution are obtained by constructing a suitable Lyapunov function, which determines a critical value \(R_0^*\) corresponding to the control reproduction number \(R_c\) of the corresponding determined system. In addition, a sufficient criteria for extinction of the diseases is derived. Finally, the numerical simulations illustrate our theoretical results, which show that, the stronger white noises can result in the extinction of the diseases and telegraph noises can strength the stability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pakar, I., Bayat, M., Bayat, M.: On the approximate analytical solution for parametrically excited nonlinear oscillators. J. VibroEng. 14, 423–429 (2012)

    Google Scholar 

  2. Bayat, M., Pakar, I.: Nonlinear free vibration analysis of tapered beams by Hamiltonian approach. J. VibroEng. 13, 654–661 (2011)

    Google Scholar 

  3. Pakar, I., Bayat, M.: Analytical study on the non-linear vibration of Euler–Bernoulli beams. J. VibroEng. 14, 216–224 (2012)

    Google Scholar 

  4. Zuo, W., Jiang, D.: Periodic solutions for a stochastic non-autonomous Holling–Tanner predator–prey system with impulses. Nonlinear Anal. Hybrid Syst. 22, 191–201 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Sun, X., Zuo, W., Jiang, D., Hayat, T.: Unique stationary distribution and ergodicity of a stochastic Logistic model with distributed delay. Phys. A 512, 864–881 (2018)

    MathSciNet  Google Scholar 

  6. Ji, C., Jiang, D., Shi, N.: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359(2), 482–498 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Song, M., Zuo, W., Jiang, D., Hayat, T.: Stationary distribution and ergodicity of a stochastic cholera model with multiple pathways of transmission. J. Frankl. Inst. (2020). https://doi.org/10.1016/j.jfranklin.2020.04.061

    Article  MathSciNet  MATH  Google Scholar 

  8. Song, Y., Jiang, H., Yuan, Y.: Turing-Hopf bifurcation in the reaction-diffusion in the reaction-diffusion system with delay and application to a diffusive predator–prey model. J. Appl. Anal. Comput. 9, 1132–1164 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Zuo, W., Song, Y.: Stability and Double-Hopf bifurcations of a Gause-Kolmogorov-type predator-prey system with indirect prey-taxis. J. Dyn. Differ. Equ. (2020). https://doi.org/10.1007/s10884-020-09878-9

    Article  Google Scholar 

  10. LaFond, R., Lukehart, S.: Biological basis for syphilis. Clin. Microbiol. Rev. 19(1), 29–49 (2006)

    Google Scholar 

  11. Garnett, G.P., Aral, S.O., Hoyle, D.V., Cates, W., Anderson, R.M.: The natural history of syphilis: implications for the transmission dynamics and control of infection. Sex. Transm. Dis. 24, 185–200 (1997)

    Google Scholar 

  12. Louis, M.E.S., Wasserheit, J.N.: Elimination of syphilis in the United States. Science 281, 353–354 (1998)

    Google Scholar 

  13. Leichliter, J.S., Grey, J.A., Cuffe, K.M., et al.: Geographic correlates of primary and secondary syphilis among men who have sex with men in the United States. Ann. Epidemiol. 32, 12–19 (2019)

    Google Scholar 

  14. Read, P., Fairley, C.K., Chow, E.P.F.: Increasing trends of syphilis among men who have sex with men in high income countries. Sex. Health 12, 155–163 (2015)

    Google Scholar 

  15. Heffelfinger, J.D., Swint, E.B., Berman, S.M., Weinstock, H.S.: Trends in primary and secondary syphilis among men who have sex with men in the United States. Am. J. Public Health 97, 1076–1083 (2007)

    Google Scholar 

  16. Singh, A.E., Romanowski, B.: Syphilis: review with emphasis on clinical, epidemiologic, and some biologic features. Clin. Microbiol. Rev. 203, 187–209 (1999)

    Google Scholar 

  17. Workowski, K.A., Bolan, G.A.: Sexually transmitted diseases treatment guidelines. MMWR Morbid. Mortal. Wkly. Rep. 64, 1–137 (2015)

    Google Scholar 

  18. Saad-Roy, C.M., Shuai, Z., Driessche, P.: A mathematical model of syphilis transmission in an MSM population. Math. Biosci. 277, 59–70 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Iboi, E., Okuonghae, D.: Population dynamics of a mathematical model for syphilis. Appl. Math. Model. 40(5–6), 3573–3590 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Tuite, A.R., Fisman, D.N., Mishra, S.: Screen more or screen more often? Using mathematical models to inform syphilis control strategies. BMC Public Health 13, 1–9 (2013)

    Google Scholar 

  21. Pourbohloul, B., Rekart, M., Brunham, R.: Impact of mass treatment on syphilis transmission—a mathematical modeling approach. Sex. Transm. Dis. 30(4), 297–305 (2003)

    Google Scholar 

  22. Milner, F.A., Zhao, R.: A new mathematical model of syphilis. Math. Model. Nat. Phenom. 5(6), 96–108 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Fenton, K.A., Breban, R., Vardavas, R., Okano, J.T., Martin, T., Aral, S., Blower, S.: Infectious syphilis in high-income settings in the 21st century. Lancet Infect. Dis. 8(4), 244–253 (2008)

    Google Scholar 

  24. Li, D., Chen, Z., Tao, C.: Comparison of three syphilis algorithms in West China. Clin. Chim. Acta 488, 76–80 (2019)

    Google Scholar 

  25. Yang, Q., Jiang, D., Shi, N., Ji, C.: The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J. Math. Anal. Appl. 388(1), 248–271 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Lin, Y., Jiang, D.: Threshold behavior in a stochastic SIS epidemic model with standard incidence. J. Dyn. Differ. Equ. 26(4), 1079–1094 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Liu, M., Bai, C.: Optimal harvesting policy of a stochastic food chain population model. Appl. Math. Comput. 245, 265–270 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Luo, Q., Mao, X.: Stochastic population dynamics under regime switching II. J. Math. Anal. Appl. 355(2), 577–593 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. 46(4), 1155–1179 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Liu, Q.: The threshold of a stochastic susceptible-Infective epidemic model under regime switching. Nonlinear Anal. Hybrid Syst. 21, 49–58 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Qi, K., Jiang, D.: Threshold behavior in a stochastic HTLV-I infection model with CTL immune response and regime switching. Math. Methods Appl. Sci. 41(16), 6866–6882 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Liu, Q., Jiang, D., Shi, N.: Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching. Appl. Math. Comput. 316, 310–325 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Zuo, W., Jiang, D.: Stationary distribution and periodic solution for stochastic predator–prey systems with nonlinear predator harvesting. Commun. Nonlinear Sci. Numer. Simul. 36, 65–80 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Du, N.H., Kon, R., Sato, K., Takeuchi, Y.: Dynamical behavior of Lotka–Volterra competition systems: non-autonomous bistable case and the effect of telegraph noise. J. Comput. Appl. Math. 170(2), 399–422 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Settati, A., Lahrouz, A.: Stationary distribution of stochastic population systems under regime switching. Appl. Math. Comput. 244, 235–243 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Zhu, Q.: pth Moment exponential stability of impulsive stochastic functional differential equations with Markovian switching. J. Frankl. Inst. 351(7), 3965–3986 (2014)

    MATH  Google Scholar 

  37. Wang, B., Zhu, Q.: Stability analysis of semi-Markov switched stochastic systems. Automatica 94, 72–80 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Wang, B., Zhu, Q.: Stability analysis of discrete-time semi-Markov jump linear systems. IEEE Trans. Autom. Control (2020). https://doi.org/10.1109/TAC.2020.2977939

    Article  MathSciNet  MATH  Google Scholar 

  39. Lee, T.H., Park, J.H., Xu, S.: Relaxed conditions for stability of time-varying delay systems. Automatica 75, 11–15 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, R., Zeng, D., Zhong, S.: Novel master-slave synchronization criteria of chaotic Lur’e systems with time delays using sampled-data. J. Frankl. Inst. 354(12), 4930–4954 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Khasminskii, R.: Stochastic Stability of Differential Equations. Alphen aan den Rijn-Germantown (1980)

  42. Zu, L., Jiang, D., O’Regan, D., Hayat, T., Ahmad, B.: Ergodic property of a Lotka-Volterra predator-prey model with white noise higher order perturbation under regime switching. Appl. Math. Comput. 330, 93–102 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Liu, Q., Jiang, D., Hayat, T., Ahmad, A.: Dynamical behavior of stochastic multigroup S-DI-A epidemic models for the transmission of HIV. J. Frankl. Inst. 355(13), 5830–5865 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Higham, D.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Zhu, Q.: Stability analysis of stochastic delay differential equations with Levy noise. Syst. Control Lett. 118, 62–68 (2018)

    MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the NSFC of China (Nos. 11671236, 11871473) and Shandong Provincial Natural Science Foundation (Nos. ZR2019MA006, ZR2019MA010), and the Fundamental Research Funds for the Central Universities (No. 19CX02055A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Zuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zuo, W., Jiang, D. et al. Stationary distribution and extinction of a stochastic model of syphilis transmission in an MSM population with telegraph noises. J. Appl. Math. Comput. 66, 645–672 (2021). https://doi.org/10.1007/s12190-020-01453-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01453-1

Keywords

Mathematics Subject Classification

Navigation