[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Discrepancy principles for fractional Tikhonov regularization method leading to optimal convergence rates

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Fractional Tikhonov regularization (FTR) method was studied in the last few years for approximately solving ill-posed problems. In this study we consider the Schock-type discrepancy principle for choosing the regularization parameter in FTR and obtained the order optimal convergence rate. Numerical examples are provided in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arcangeli, R.: Pseudo-solution de l’ equation \(Ax=y\). C. R. Math. Acad. Sci. Paris Ser. A 263 A, 282–285 (1966)

  2. Bianchi, D., Buccini, A., Donatelli, M., Serra-Capizzano, S.: Iterated fractional Tikhonov regularization. PAMM 15, 581–582 (2015)

    Google Scholar 

  3. Bianchi, D., Donatelli, M.: On generalized iterated Tikhonov regularization with operator dependent seminorms. Electron. Trans. Numer. Anal. 47, 73–99 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bianchi, D., Buccini, A., Donatelli, M., Serra-Capizzano, S.: Iterated fractional Tikhonov regularization. Inverse Probl. 31(5), 055005 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Engl, H.W.: Discrepancy principle for Tikhonov regularization of Ill-posed problems leading to optimal convergence rates. J. Optim. Theory Appl. 52, 209–215 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Engl, H.W.: On the choice of regularization parameter for iterated Tikhonov regularization of Ill-posed problems. J. Approx. Theory. 49, 55–63 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  8. Engl, H.W., Neubauer, A.: Optimal discrepancy principle for the Tikhonov regularization of integral equations of the first kind. In: Hammerlin, G., Hoffmann, K.H. (eds.) Constructive Methods for the Practical Treatment of Integral Equations, pp. 120–141. Birkhäuser, Basel (1985)

    Chapter  Google Scholar 

  9. Engl, H.W., Neubauer, A.: Optimal parameter choice for ordinary and iterated tikhonov regularization. In: Engl, H.W., Groetsch, C.W. (eds.) Inverse and Ill-Posed Problems, pp. 97–125. Academic Press, New York (1987)

    Chapter  Google Scholar 

  10. Engl, H.W., Neubauer, A.: An improved version of Marti’s method for solving ill-posed linear integral equations. Math. Comput. 45, 405–416 (1985)

    MathSciNet  MATH  Google Scholar 

  11. George, S.: Approximation method for ill-posed operator equations, Ph. D Thesis, Goa University (1994)

  12. George, S., Nair, M.T.: On a generalized arcangelis method for Tikhonov regularization with inexact data. Numer. Funct. Anal. Optim. 19(7&8), 773–787 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. George, S., Nair, M.T.: Parameter choice by discrepancy principles for ill-posed problems leading to optimal convergence rates. J. Optim. Theory Appl. 83(1), 217–222 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gerth, D., Klann, E., Ramalau, R., Reichel, L.: On fractional Tikhonov regularization. J. Inverse Ill Posed Probl. 23(6), 611–625 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Groetsch, C.W.: Generalized Inverse of Linear Operators. Representation and Application. Marcel Dekker, New York (1977)

    MATH  Google Scholar 

  16. Groetsch, C.W.: The Theory of Tikhonov Regularization Method for Fredholm Equations of the First Kind. Pitman, Boston (1984)

    MATH  Google Scholar 

  17. Groetsch, C.W.: Comments on Morozov’s Discrepancy Principle. In: Hammerlin, G., Hoffmann, K.H. (eds.) Improperly Posed Problems and Their Numerical Treatments, pp. 97–104. Birkhäuser, Basel (1983)

    Chapter  Google Scholar 

  18. Groetsch, C.W., Schock, E.: Asymptotic convergence rate of Arcangeli’s method for Ill-posed problems. Appl. Anal. 18(3), 175–182 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guacaneme, J.E.: An optimal parameter choice for regularized Ill-posed problems. Integr. Equ. Oper. Theory. 11(4), 610–613 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hansen, P.C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms. 46(2), 189–194 (2007)

  21. Hochstenbach, M.E., Reichel, L.: Fractional Tikhonov regularization for linear discrete Ill-posed problems. BIT Numer. Math. 51(1), 197–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hochstenbach, M.E., Noschese, S., Reichel, L.: Fractional regularization matrices for linear discrete Ill-posed problems. J. Eng. Math. 93, 113–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huckle, T.K., Sedlacek, M.: Tikhonov-Phillips regularization with operator dependent seminorms. Numer. Algorithms 60(2), 339–353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klann, E., Ramalau, R.: Regularization by fractional filter methods and data smoothing. Inverse Probl. 24(2), 113–129 (2008)

    Article  MathSciNet  Google Scholar 

  25. Louis, A.K.: Inverse und Schlecht Gestellte Probleme. Teubner, Stuttgart (1989)

    Book  MATH  Google Scholar 

  26. Morigi, S., Reichel, L., Sgallari, F.: Fractional Tikhonov regularization with a nonlinear penalty term. J. Comput. Appl. Math. 324, 142–154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)

    Book  Google Scholar 

  28. Morozov, V.A.: The error principle in the solution of operational equations by the regularization method. USSR Comput. Math. Math. Phys. 8, 63–67 (1996)

    Article  Google Scholar 

  29. Nair, M.T.: Linear Operator Equations. Approximation and Regularization. World Scientific, Singapore (2009)

    Book  MATH  Google Scholar 

  30. Nair, M.T.: A generalization of Arcangeli’s method for Ill-posed problems leading to optimal rates. Integr. Equ. Oper. Theory 15, 1042–1046 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reddy, G.D.: The parameter choice rules for weighted Tikhonov regularization scheme. Comput. Appl. Math. 37(2), 2039–2052 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schock, E.: Parameter choice by discrepancy principles for the approximate solution of Ill-posed problems. Integr. Equ. Oper. Theory 7(6), 895–898 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schock, E.: On the asymptotic order of accuracy of Tikhonov regularization. J. Optim. Theory Appl. 44(1), 95–104 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude for the reviewers for their constructive criticism. The work of Santhosh George is supported by the Core Research Grant by SERB, Department of Science and Technology, Govt. of India, EMR/2017/001594. Kanagaraj would like to thank National Institute of Technology Karnataka, India, for the financial support. The work of G. D. Reddy (Post-doctoral fellow in IIT Hyderabad) is supported by the National Board of Higher Mathematics (NBHM), Mumbai, India, Grant No: 2/40(56)/2015/R&D-II/12987. The support of the NBHM is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santhosh George.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanagaraj, K., Reddy, G.D. & George, S. Discrepancy principles for fractional Tikhonov regularization method leading to optimal convergence rates. J. Appl. Math. Comput. 63, 87–105 (2020). https://doi.org/10.1007/s12190-019-01309-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01309-3

Keywords

Mathematics Subject Classification

Navigation