[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Intelligent prediction of rock mass deformation modulus through three optimized cascaded forward neural network models

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Rock mass deformation modulus (Em) is a key parameter that is needed to be determined when designing surface or underground rock engineering constructions. It is not easy to determine the deformability level of jointed rock mass at the laboratory; thus, researchers have suggested different in-situ test methods. Today, they are the best methods; though, they have their own problems: they are too costly and time-consuming. Addressing such difficulties, the present study offers three advanced and efficient machine-learning methods for the prediction of Em. The proposed models were based on three optimized cascaded forward neural network (CFNN) using the Levenberg–Marquardt algorithm (LMA), Bayesian regularization (BR), and scaled conjugate gradient (SCG). The performance of the proposed models was evaluated through statistical criteria including coefficient of determination (R2) and root mean square error (RMSE). The computational results showed that the developed CFNN-LMA model produced better results than other CFNN-SCG and CFNN-BR models in predicting the Em. In this regard, the R2 and RMSE values obtained from CFNN-LMA, CFNN-SCG, and CFNN-BR models were equal to (0.984 and 1.927), (0.945 and 2.717), and (0.904 and 3.635), respectively. In addition, a sensitivity analysis was performed through the relevancy factor and according to its results, the uniaxial compressive strength (UCS) was the most impacting parameters on Em.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hasanipanah.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by: H. Babaie

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanipanah, M., Jamei, M., Mohammed, A.S. et al. Intelligent prediction of rock mass deformation modulus through three optimized cascaded forward neural network models. Earth Sci Inform 15, 1659–1669 (2022). https://doi.org/10.1007/s12145-022-00823-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-022-00823-6

Keywords

Navigation