[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Shoreline changes over last five decades and predictions for 2030 and 2040: a case study from Cuddalore, southeast coast of India

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

We estimated shoreline changes over the last five decades in a part of the southeast coast of India at Cuddalore by using multitemporal satellite images from six different time-windows (i.e. 1972, 1980, 1990, 2000, 2010 and 2020) and the digital shoreline analysis system tool (DSAS 5.0). The linear regression rate and end point rate quantified the maximum erosion at rates of 6.8–7.2 m/year and the maximum accretion at rates of 3.9–4.2 m/year at different sites along the 42 km stretch that was affected by several disasters in the recent past and has a substantial industrial presence. The net shoreline movement analysis identified the sites that experienced about 340 m of erosion and about 203 m of accretion. The Kalman filter model predicted up to 274 m of the shoreline erosion at Chinna vaaikaal until 2040. Similarly, the shoreline at Puthupettai could be accreted up to 538 m over the same interval. The outcome of this research demonstrates that studies similar to ours should be carried out in different parts along the vast Indian coastline to understand the shoreline evolution in order to prepare a better coastal management strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allan JC, Komar PD, Priest GR (2003) Shoreline variability on the high-energy Oregon Coast and its usefulness in erosion-hazard assessments. J Coast Res 38:83–105

    Google Scholar 

  • Bagli S, Soille P (2003) Morphological automatic extraction of Pan-European coastline from Landsat ETM+ images. International Symposium on GIS and Computer Cartography for Coastal Zone Management, October 2003, Genova.

  • Bhat HG (1998) Long term shoreline changes of Mulki- Pavanje and Netravathy – estuaries, Karnataka. J Indian Soc Remote Sens 23:3

    Google Scholar 

  • Bide T (2020) Silica sand mineral planning factsheet, British Geological Survey. https://www.researchgate.net/publication/339796329.

  • Chen X (2002) Using remote sensing and GIS to analyse land cover change and its impacts on regional sustainable development. Int J Remote Sens 23(1):107–124

    Article  Google Scholar 

  • Ciavola P, Mantovani F, Simeoni U, Tessari U (1999) Relation be-tween river dynamics and coastal changes in albania: An assessment integrating satellite imagery with historical data. Int J Remote Sens 20(3):561–584

    Article  Google Scholar 

  • Dilara C, Tarik T (2019) Automatic detection of shoreline change by Geographical Information System (GIS) and remote sensing in the Go¨ksu Delta Turkey. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-019-00947-1

    Article  Google Scholar 

  • Crowell M, Douglas BC, Leatherman SP (1997) On forecasting future U.S. shoreline positions: a test of algorithms. J Coast Res. 13(4):1245–1255

    Google Scholar 

  • Davidson MA, Lewis RP, Turner IL (2010) Forecasting seasonal to multi-year shoreline change. Coast Eng 57:620–629. https://doi.org/10.1016/j.coastaleng.2010.02.001

    Article  Google Scholar 

  • Deepika B, Avinash K, Jayappa KS (2013) Shoreline change rate estimation and its forecast: remote sensing, geographical information system and statistics-based approach. Int J Environ Sci Technol. 11(2):395–416. https://doi.org/10.1007/s13762-013-0196-1

    Article  Google Scholar 

  • DEIAA (2019) District Environment Impact Assessment Authority, Cuddalore.

  • Digital shoreline analysis system version 5.0 user guide (2018) USGS. Open-file report 2018–1179.

  • Dolan R, Fenster MS, Holme SJ (1991) Temporal analysis of shoreline recession and accretion. J Coast Res 7:723–744

    Google Scholar 

  • Douglas BC, Crowell M (2000) Long-term shoreline position prediction and error propagation. J Coast Res 16(1):145–152

    Google Scholar 

  • ENVIS (2009) State of environment report India, Environmental Information System (ENVIS), Ministry of Environment and Forest, Government of India.

  • Fenstert MS, Dolant R, Elder JF (1993) A new method for predicting shoreline position historical data. J Coast Res 9(1):147–171

    Google Scholar 

  • Gurugnanam B (2020) Remote Sensing and GIS Application for Shoreline Change Measurement in South East Coastal region of Tamil Nadu India. Int J Eng Adv Technol. 9(3).

  • Hegde AV (2010) Coastal erosion and mitigation methods – Global state of art. Indian J Geo-Mar Sci 39(4):521–530

    Google Scholar 

  • IMD Atlas (2011) Cyclone eAtlas—IMD, Tracks of cyclones and depressions over North Indian Ocean (from 1891 to 2011). http://www.imd.gov.in/section/nhac/dynamic/eatlas.pdf

  • Jayakumar K, Malarvannan S (2016) Assessment of shoreline changes over the Northern Tamil Nadu Coast, South India using WebGIS techniques. J Coast Conserv. 20(6):477–487

    Article  Google Scholar 

  • Kaliraj S, Chandrasekar N, Magesh NS (2013) Evaluation of coastal erosion and accretion processes along the southwest coast of Kanyakumari, Tamil Nadu using geospatial techniques. Arab J Geosci. https://doi.org/10.1007/s12517-013-1216-7

    Article  Google Scholar 

  • Kumaravel S, Ramkumar T, Gurunanam B, Suresh M (2012) Quantitative estimation of shoreline changes using remote sensing and GIS: a case study in the parts of Cuddalore district, East coast of Tamil Nadu, India. Int J Environ Sci. 2(4):2482

    Google Scholar 

  • Leatherman SP, Clow B (1983) UMD Shoreline Mapping Project. IEEE Geosci Remote Sensing Soc Newsl 22:5–8

    Google Scholar 

  • Linham MM, Nicholls Robert J (2012) Adaptation technologies for coastal erosion and flooding: a review. Maritime Eng. 165:95–111

    Article  Google Scholar 

  • Long JW, Plant NG (2012) Extended Kalman Filter framework for forecasting shoreline evolution. Geophys Res Lett. 39:13. https://doi.org/10.1029/2012GL052180

    Article  Google Scholar 

  • Mahapatra M, Ratheesh R, Rajawat AS (2014) Shoreline change analysis along the Coast of South Gujarat, India, using digital shoreline analysis system. J Indian Soc Remote Sens 42(4):869–876

    Article  Google Scholar 

  • Maiti S, Bhattacharya AK (2009) Shoreline change analysis and its application to prediction: a remote sensing and statistics based approach. Mar Geol 257:11–23

    Article  Google Scholar 

  • Marfai MA, Almohammad H, Dey S, Susanto B, King L (2008) Coastal dynamic and shoreline mapping: multi-sources spatial data analysis in Semarang Indonesia. Environ Monit Assess 142:297–308

    Article  Google Scholar 

  • Masselink G, Short AD (1993) The effect of tide range on beach morphodynamics and morphology: a conceptual beach model. J Coast Res 9(3):785–800

    Google Scholar 

  • Mills JP, Buckley SJ, Mitchell HL, Clarke PJ, Edwards SJ (2005) A geomatics data integration technique for coastal change monitoring. Earth Surf Proc Land 30:651–664

    Article  Google Scholar 

  • Mouat DA, Lancaster J (1996) Use of remote sensing and GIS to identify vegetation change in the upper San Pedro River watershed. Arizona Geocarto Int 11(2):55–67

    Article  Google Scholar 

  • Mujabar S, Chandrasekar N (2011a) Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arab J Geosci. https://doi.org/10.1007/s12517-011-0394-4

    Article  Google Scholar 

  • Mujabar S, Chandrasekar N (2011b) A Shoreline change analysis along the coast between Kanyakumari and Tuticorin, India using remote sensing and GIS. Arab J Geosci 6(2013):6647–6664

    Google Scholar 

  • Mujabar S, Chandrasekar N, Immanual JL (2007) Impact of the 26th December 2004 Tsunami along the Coast between Kanyakumari and Ovari, Tamilnadu, South India. Shore Beach 75(2):22–29

    Google Scholar 

  • Mukhopadhyay A, Mukherjee S, Hazra S (2011) Mitra D (2011) Sea level rise and shoreline changes: a geoinformatic appraisal of Chandipur coast, Orissa. Int J Geol Earth Environ Sci. 1(1):9–17

    Google Scholar 

  • Murthy KSR, Subrahmanyam AS, Murty GPS, Sarma KVLNS, Subrahmanyam V, Mohana Rao K, Suneetha Rani P, Anuradha A, Adilakshmi B, Sri Devi T (2006) Factors guiding tsunami surge at the Nagapattinam-Cuddalore shelf Tamil Nadu, East Coast of India. Curr Sci 90(11):1535–1538

    Google Scholar 

  • Muthusankar, G. 2011. Multi Hazard Risk Assessment and Management Strategies for Nagapattinam Coastal Zone, Tamil Nadu. Bharathidasan University. Ph.D thesis,147p. http://14.139.186.108/jspui/bitstream/123456789/31181/1/Muthusankar_Ph.D.thesis.pdf

  • Muthusankar G, Jonathan MP, Lakshumanan C, Roy PD, Srinivasa-Raju K (2017) Coastal erosion vs man-made protective structures: evaluating a two-decade history from southeastern India. Nat Hazards 85(1):637–647

    Article  Google Scholar 

  • Nageswara Rao K, Subraelu P, Venkateswara Rao T, Hema Malini B, Ratheesh R, Bhattacharya S, Rajawat AS (2009) Sea-level riseand coastal vulnerability: an assessment of Andra Pradesh coast, India through remote sensing and GIS. J Coast Conserv 12:195–207

    Article  Google Scholar 

  • Nassar K, Mahmod WE, Fath H, Masria A, Nadaoka K, Negm A (2018) Shoreline change detection using DSAS technique: case of North Sinai coast, Egypt. Mar Georesour Geotechnol. https://doi.org/10.1080/1064119X.2018.1448912

    Article  Google Scholar 

  • Natesan U, Parthasarathy A, Vishnunath R, Edwin Jeba Kumar G, Vincent Ferrer A (2015) Monitoring longterm shoreline changes along Tamil Nadu, India using geospatial techniques‖. Aquatic Procedia 4:325–332

    Article  Google Scholar 

  • Nithu Raj R, Rejin Nishkalank A, Chrisben Sam S (2020) Coastal shoreline changes in Chennai: environment impacts and control strategies of southeast coast Tamil Nadu. Handbook Environ Mater Manag. https://doi.org/10.1007/978-3-319-58538-3_223-1

    Article  Google Scholar 

  • Pandiaraj D, Karikalan R, Alaguraja P, Jeyaraj N, Roger DC, Giriprasad C (2010) A study on remote sensing on coastal geomorphological landforms from Coleroon River Mouth to Cuddalore South Arcot, Tamil Nadu, India. Int J Geomat Geosci. 1(1):98

    Google Scholar 

  • Poornima KV, Sriganesh J, Annadurai R (2015) Coastal structures’ influence on the North Chennai Shore using remote sensing and GIS techniques. J Adv Res GeoSci Rem Sens 2:3–4

    Google Scholar 

  • Punithavathi J, Tamilenthi S, Baskaran R (2012) “A study of thane cyclone and its impacts in Tamil Nadu, India using geographic information system”, Archives of Applied Science Research, 4, 1. ISSN 685–695:0975–1508

    Google Scholar 

  • Reid RS, Kruska RL, Muthui N, Taye A, Wotton S, Wilson CJ (2000) Land-use and land-cover dynamics in response to changes in climatic, biological and sociopolitical forces: the case of Southwestern Ethiopia. Landscape Ecol 15:339–355

    Article  Google Scholar 

  • Salghuna NN, Aravind Bharathvaj S (2015) Shoreline change analysis for northern part of the Coromandel Coast. Aquatic Procedia 4(2015):317–324

    Article  Google Scholar 

  • Saranathan E, Chandrasekaran R, Soosai Manickaraj D, Kannan M (2011) Shoreline Changes in Tharangampadi Village, Nagapattinam District, Tamil Nadu, India—A Case Study. J Indian Soc Remote Sens 39(1):107–115

    Article  Google Scholar 

  • Saravanan S, Chandrasekar N, Sheik Mujabar P, Hentry C (2011) An overview of beach morphodynamic classification along the beaches Between Ovari and Kanyakumari, Southern Tamil Nadu coast. India Phys Oceanogr 21(2):130–141

    Google Scholar 

  • Saxena S, Purvaja R, Suganya GM, Ramesh R (2012) Coastal hazard mapping in the Cuddalore region South India. Nat Hazards. https://doi.org/10.1007/s11069-012-0362-7

    Article  Google Scholar 

  • Scott DB (2005) Coastal changes, rapid. In: Schwartz ML (ed) Encyclopedia of coastal sciences. Springer, Dordrecht, pp 253–255

    Google Scholar 

  • Short AD, Trembanis AC (2004) Decadal scale patterns in beach oscillation and rotation Narrabeen beach, Australia—time series, PCA and wavelet analysis. J Coast Res 20(2):523–532

    Article  Google Scholar 

  • Siddiqui MN, Maajid S (2004) Monitoring of geo-morphological changes for planning reclamation work in coastal area of Karachi, Pakistan. Adv Space Res 33:1200–1205

    Article  Google Scholar 

  • Sriganesh J, Saravanan P, Ram Mohan V (2015) Remote Sensing and GIS Analysis on Cuddalore Coast of Tamil Nadu, India. National Conference on Coastal Environment 2015. https://www.researchgate.net/publication/289527863

  • Sunarto S (2004) Geomorphic changes in coastal area surround Muria Volcano. Dissertation, Gadjah Mada University Yogyakarta (in Indonesian).

  • Thankappan N, Varangalil N, Varghees TK, Philipose KN (2017) Coastal geomorphology and beach stability along Thiruvananthapuram south – west coast of India. Nat Hazards. https://doi.org/10.1007/s11069-017-301

    Article  Google Scholar 

  • Thieler ER, Himmelstoss EA, Zichichi JL, Ergul A (2009) Digital shoreline analysis system (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change. U.S. Geological Survey open-file report 2008–1278. U.S. Geological Survey, Woods Hole.

  • Thom BG, Cowell PJ (2005) Coastal changes, gradual. In: Schwartz ML (ed) Encyclopedia of coastal sciences. Springer, Dordrecht, pp 251–253

    Google Scholar 

  • To DV, Thao PTP (2008) A shoreline analysis using DSAS in Narn Dinh: coastal area. Int J Geoinform 4(1):37–42

    Google Scholar 

  • USACE (United States Army Corps of Engineers) (2003) Coastal Engineering Manual – Part V (http://140.194.76.129/publications/eng-manuals/em1110-2-1100/PartI/PartI.htm). Washington DC: USACE.

  • Viveganandan S, Lakshumanan C, Sundararajan M, Eswaramoorthi S, Usha N (2013) Depositional environment of sediments along the Cuddalore coast of Tamilnadu India. Indian J Geo Mar Sci 42(3):375–382

    Google Scholar 

  • Weng Q (2002) Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS, and stochastic modeling. J Environ Manag 64:273–284

    Article  Google Scholar 

  • Yang X, DamenVan zuidam MCJRA (1999) Use of thematic map-per imagery with a geographic information system for geomorphologic map-ping in a large deltaic lowland environment. Int J Remote Sens 20(4):659–681

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to National Centre for Coastal Research (NCCR) of the Ministry of Earth Science (MoES, India) for the financial support and continuous encouragement. GM acknowledges and thanks to EU EQUIP Project “FISHERCOAST - ES/R010404/1”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Logesh Natarajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, L., Sivagnanam, N., Usha, T. et al. Shoreline changes over last five decades and predictions for 2030 and 2040: a case study from Cuddalore, southeast coast of India. Earth Sci Inform 14, 1315–1325 (2021). https://doi.org/10.1007/s12145-021-00668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-021-00668-5

Keywords

Navigation