[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Change detection techniques for remote sensing applications: a survey

  • Review Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Change detection captures the spatial changes from multi temporal satellite images due to manmade or natural phenomenon. It is of great importance in remote sensing, monitoring environmental changes and land use –land cover change detection. Remote sensing satellites acquire satellite images at varying resolutions and use these for change detection. This paper briefly analyses various change detection methods and the challenges and issues faced as part of change detection. Over the years, a wide range of methods have been developed for analyzing remote sensing data and newer methods are still being developed. Timely and accurate change detection of Earth’s surface features provides the basis for evaluating the relationships and interactions between human and natural phenomena for the better management of resources. In general, change detection applies multi-temporal datasets to quantitatively analyse the temporal effects of the phenomenon. As such, this study attempts to provide a comprehensive review of the fundamental processes required for change detection. The study also gives a brief account of the main techniques of change detection and discusses the need for development of enhanced change detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajadi O, Meyer F, Webley P (2016) Change detection in synthetic aperture radar images using a multiscale-driven approach. Remote Sens 8:482. https://doi.org/10.3390/rs8060482

    Google Scholar 

  • Alonso-Montesinos J, Martínez-Durbán M, del Sagrado J, del Águila IM, Batlles FJ (2016) The application of Bayesian network classifiers to cloud classification in satellite images. Renew Energy 97:155–161. https://doi.org/10.1016/j.renene.2016.05.066

    Google Scholar 

  • Alshehhi R, Marpu PR (2017) Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images. ISPRS J Photogramm Remote Sens 126:245–260

    Google Scholar 

  • Amarnath G, Babar S, Sri M, Murthy R (2017) Evaluating MODIS-vegetation continuous field products to assess tree cover change and forest fragmentation in India – a multi-scale satellite remote sensing approach. Egypt J Remote Sensing Space Sci 20:157–168

    Google Scholar 

  • Amici V, Marcantonio M, La Porta N, Rocchini D (2017) A multi-temporal approach in MaxEnt modelling: a new frontier for land use/land cover change detection. Ecol Inform 40:40–49. https://doi.org/10.1016/j.ecoinf.2017.04.005

    Google Scholar 

  • Aslami F, Ghorbani A (2018) Object-based land-use / land-cover change detection using Landsat imagery : a case study of Ardabil , Namin , and Nir counties in Northwest Iran. Environ Monit Assess 190:1–14. https://doi.org/10.1007/s10661-018-6751-y

    Google Scholar 

  • Azzouzi SA, Vidal-Pantaleoni A, Bentounes HA (2017) Desertification monitoring in Biskra, Algeria, with Landsat imagery by means of supervised classification and change detection methods. IEEE Access 5:9065–9072. https://doi.org/10.1109/ACCESS.2017.2700405

    Google Scholar 

  • Barber J (2015) A generalized likelihood ratio test for coherent change detection in Polarimetric SAR. IEEE Geosci Remote Sens Lett 12:1873–1877. https://doi.org/10.1109/LGRS.2015.2433134

    Google Scholar 

  • Berger A, Ettllin G, Quincke C, Rodriguez-Bocca P (2019) Predicting the normalized difference vegetation index(NDVI) by training a crop growth model with historical data. Comput Electron Agric:1–7

  • Bhandari AK, Soni V, Kumar A, Singh GK (2014) Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT – SVD. ISA Trans:1–11

  • Bhandari AK, Kumar A, Singh GK (2015a) Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Syst Appl 42:8707–8730

    Google Scholar 

  • Bhandari AK, Kumar A, Singh GK (2015b) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Syst Appl 42:1573–1601

    Google Scholar 

  • Bose S, Mukherjee A, Madhulika, Chakraborty S, Samanta S, Dey N (2013) Parallel image segmentation using multi-threading and k-means algorithm. IEEE Int Conf Comput Intell Comput Res:1–5. https://doi.org/10.1109/ICCIC.2013.6724171

  • Cao G, Li X, Zhou L (2016a) Unsupervised change detection in high spatial resolution remote sensing images based on a conditional random field model. Eur J Remote Sens 49:225–237. https://doi.org/10.5721/EuJRS20164913

    Google Scholar 

  • Cao G, Zhou L, Li Y (2016b) A new change-detection method in high-resolution remote sensing images based on a conditional random field model. Int J Remote Sens 37:1173–1189. https://doi.org/10.1080/01431161.2016.1148284

    Google Scholar 

  • Chen T, Trinder JC, Niu R (2017) Object-oriented landslide mapping using ZY-3 satellite imagery, random forest and mathematical morphology, for the three-gorges reservoir, China. Remote Sens 9. https://doi.org/10.3390/rs9040333

  • Chen K, Fu K, Yan M, Gao X, Sun X, Wei X (2018) Semantic segmentation of aerial images with shuffling convolutional neural networks. IEEE Geosci Remote Sens Lett 15:173–177. https://doi.org/10.5194/isprs-annals-IV-1-29-2018

    Google Scholar 

  • Chouhan S, Kaul A, Sharma U (2018) Soft computing approaches for image segmentation. Multimed Tools Appl 77:28483–28537

    Google Scholar 

  • Cui B, Ma X, Xie X, Ren G, Ma Y (2017) Classification of visible and infrared hyperspectral images based on image segmentation and edge-preserving filtering. Infrared Phys Technol 81:79–88. https://doi.org/10.1016/j.infrared.2016.12.010

    Google Scholar 

  • Feizizadeh B, Blaschke T, Tiede D, Moghaddam MHR (2017) Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes. Geomorphology 293:240–254. https://doi.org/10.1016/j.geomorph.2017.06.002

    Google Scholar 

  • Feng W, Sui H, Tu J, Huang W, Xu C, Sun K (2018) A novel change detection approach for multi-temporal high-resolution remote sensing images based on rotation forest and coarse-to-fine uncertainty analyses. Remote Sens 10. https://doi.org/10.3390/rs10071015

  • Ferraris V, Dobigeon N, Wei Q, Chabert M (2018) Detecting changes between optical images of different spatial and spectral resolutions: a fusion-based approach. IEEE Trans Geosci Remote Sens 56:1566–1578

    Google Scholar 

  • Ferreira LS, Helena D, Duarte S (2019) Exploring the relationship between urban form , land surface temperature and vegetation indices in a subtropical megacity. Urban Clim 27:105–123

    Google Scholar 

  • Fytsilis AL, Prokos A, Koutroumbas KD, Michail D, Kontoes CC (2016) A methodology for near real-time change detection between unmanned aerial vehicle and wide area satellite images. ISPRS J Photogramm Remote Sens 119:165–186. https://doi.org/10.1016/j.isprsjprs.2016.06.001

    Google Scholar 

  • Gandhi M, Parthiban S, Thummalu N, Christy A (2015) Ndvi: vegetation change detection using remote sensing and gis – a case study of Vellore District. 3rd Int Conf Recent Trends Comput 57:1199–1210. https://doi.org/10.1016/j.procs.2015.07.415

    Google Scholar 

  • Gandhimathi Alias Usha S, Vasuki S (2018) Improved segmentation and change detection of multi-spectral satellite imagery using graph cut based clustering and multiclass SVM. Multimed Tools Appl 77:15353–15383. https://doi.org/10.1007/s11042-017-5120-0

    Google Scholar 

  • García P, Pérez E (2016) Mapping of soil sealing by vegetation indexes and built-up index : a case study in Madrid (Spain). Geoderma 268:100–107

    Google Scholar 

  • Garcia-jimenez S, Jurio A, Pagola M, De Miguel L, Barrenechea E, Bustince H (2016) Forest fire detection: a fuzzy system approach based on overlap indices. Appl Soft Comput:1–9

  • Garzelli A, Aiazzi B, Alparone L, Lolli S, Vivone G (2018) Multispectral Pansharpening with radiative transfer-based detail-injection modeling for preserving changes in vegetation cover. Remote Sens 10:1308. https://doi.org/10.3390/rs10081308

    Google Scholar 

  • Grinias I, Panagiotakis C, Tziritas G (2016) MRF-based segmentation and unsupervised classification for building and road detection in peri-urban areas of high-resolution satellite images. ISPRS J Photogramm Remote Sens 122:145–166

    Google Scholar 

  • Gu W, Lv Z, Hao M (2017) Change detection method for remote sensing images based on an improved Markov random field. Multimed Tools Appl 76:17719–17734. https://doi.org/10.1007/s11042-015-2960-3

    Google Scholar 

  • Han M, Zhou Y (2017) An adaptive unimodal subclass decomposition (AUSD) learning system for land use and land cover classification using high-resolution remote sensing. GIScience Remote Sens 54:20–37. https://doi.org/10.1080/15481603.2016.1246057

    Google Scholar 

  • Hao M, Shi W, Deng K, Feng Q (2016) Superpixel-based active contour model for unsupervised change detection from satellite images. Int J Remote Sens 37:4276–4295. https://doi.org/10.1080/01431161.2016.1210838

    Google Scholar 

  • Haque I, Basak R (2017) Land cover change detection using GIS and remote sensing techniques : a spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. Egypt J Remote Sensing Space Sci 20:251–263

    Google Scholar 

  • He P, Shi W, Zhang H, Hao M (2014) A novel dynamic threshold method for unsupervised change detection from remotely sensed images. Remote Sens Lett 5:396–403. https://doi.org/10.1080/2150704X.2014.912766

    Google Scholar 

  • He P, Shi W, Miao Z, Zhang H, Cai L (2015) Advanced MarkRemote Sens Lettov random field model based on local uncertainty for unsupervised change detection. 6:667–676. https://doi.org/10.1080/2150704X.2015.1054045

  • Helmy AK, El-Taweel GS (2015) Image segmentation scheme based on SOM–PCNN in frequency domain. Appl Soft Comput J:1–11

  • Hölbling D, Friedl B, Eisank C (2015) An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Earth Sci Inf 8:327–335. https://doi.org/10.1007/s12145-015-0217-3

    Google Scholar 

  • Holmström L, Pasanen L (2015) Bayesian scale space analysis of temporal changes in satellite images. J Appl Stat 42:50–70. https://doi.org/10.1080/02664763.2014.932761

    Google Scholar 

  • Hore S, Chakraborty S, Chatterjee S, Dey N (2016) An integrated interactive technique for image segmentation using stack based seeded region growing and thresholding. Int J Electr Comput Eng 6:2773–2780. https://doi.org/10.11591/ijece.v6i6.11801

    Google Scholar 

  • Hoseini P, Shayesteh MG (2013) Efficient contrast enhancement of images using hybrid ant colony optimisation, genetic algorithm, and simulated annealing. Digit Signal Process 23:879–893

    Google Scholar 

  • Huang B, Zhao B, Song Y (2018a) Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens Environ 214:73–86

    Google Scholar 

  • Huang F, Chen L, Yin K, Huang J, Gui L (2018b) Object-oriented change detection and damage assessment using high-resolution remote sensing images, Tangjiao landslide, three gorges reservoir, China. Environ Earth Sci 77:1–19. https://doi.org/10.1007/s12665-018-7334-5

    Google Scholar 

  • Huang F, Yu Y, Feng T (2018c) Hyperspectral remote sensing image change detection based on tensor and deep learning. J Vis Commun Image Represent:2–24

  • Huang Z, Huang L, Li Q, Zhang T, Sang N (2018d) Framelet regularization for uneven intensity correction of color images with illumination and reflectance estimation. Neurocomputing:3–24. https://doi.org/10.1016/j.neucom.2018.06.063

  • Iino S, Ito R, Doi K, Imaizumi T, Hikosaka S (2018) CNN-based generation of high-accuracy urban distribution maps utilising SAR satellite imagery for short-term change monitoring. Int J Image Data Fusion 9832:1–17. https://doi.org/10.1080/19479832.2018.1491897

    Google Scholar 

  • Jabari S, Zhang Y (2016) RPC-based Coregistration of VHR imagery for urban change detection. Photogramm Eng Remote Sens 82:521–534. https://doi.org/10.14358/PERS.82.7.521

    Google Scholar 

  • Jiang L, Shang S, Yang Y, Guan H (2016) Mapping interannual variability of maize cover in a large irrigation district using a vegetation index – phenological index classifier. Comput Electron Agric 123:351–361

    Google Scholar 

  • Johnson BA, Iizuka K, Bragais MA, Endo I, Magcale-macandog DB (2017) Employing crowdsourced geographic data and multi-temporal / multi-sensor satellite imagery to monitor land cover change : a case study in an urbanizing region of the Philippines. Comput Environ Urban Syst 64:184–193

    Google Scholar 

  • Kaliraj S, Chandrasekar N, Ramachandran KK, Srinivas Y, Saravanan S (2017) Coastal landuse and land cover change and transformations of Kanyakumari coast , India using remote sensing and GIS. Egypt J Remote Sensing Space Sci 20:169–185

    Google Scholar 

  • Kant K, Singh A (2017) Identification of flooded area from satellite images using hybrid Kohonen fuzzy C-means sigma classifier. Egypt J Remote Sensing Space Sci 20:147–155

    Google Scholar 

  • Kapoor S, Zeya I, Singhal C, Nanda SJ (2017) A Grey Wolf Optimizer Based Automatic Clustering Algorithm for Satellite Image Segmentation. 7th Int Conf Adv Comput Commun ICACC-2017 115:415–22

  • Ke L, Lin Y, Zeng Z, Zhang L, Meng L (2018) Adaptive change detection with significance test. IEEE Access 6:27442–27450. https://doi.org/10.1109/ACCESS.2018.2807380

    Google Scholar 

  • Kelly JT, Gontz AM (2018) Using GPS-surveyed intertidal zones to determine the validity of shorelines automatically mapped by Landsat water indices. Int J Appl Earth Obs Geoinf 65:92–104

    Google Scholar 

  • Khairuzzaman AKM, Chaudhury S (2017) Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst Appl:3–34. https://doi.org/10.1016/j.eswa.2017.04.029

  • Khan SH, He X, Porikli F, Bennamoun M (2017) Forest change detection in incomplete satellite images with deep neural networks. IEEE Trans Geosci Remote Sens 55:5407–5423. https://doi.org/10.1109/TGRS.2017.2707528

    Google Scholar 

  • Kleynhans W, Salmon BP, Olivier JC (2015) Detecting settlement expansion in South Africa using a hyper-temporal SAR change detection approach. Int J Appl Earth Obs Geoinf 42:142–149. https://doi.org/10.1016/j.jag.2015.06.004

    Google Scholar 

  • Kleynhansa W, Salmon BP, Wessels KJ, Olivier JC (2015) Rapid detection of new and expanding human settlements in the Limpopo province of South Africa using a spatio-temporal change detection method. Int J Appl Earth Obs Geoinf 40:74–80. https://doi.org/10.1016/j.jag.2015.04.009

    Google Scholar 

  • Kumar A, Kumar V, Kumar A, Kumar G (2014) Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Syst Appl 41:3538–3560

    Google Scholar 

  • Lei T, Xue D, Lv Z, Li S, Zhang Y, Nandi AK (2018) Unsupervised change detection using fast fuzzy clustering for landslide mapping from very high-resolution images. Remote Sens 10:1381. https://doi.org/10.3390/rs10091381

    Google Scholar 

  • Li H, Gong M, Wang Q, Liu J, Su L (2015) A multiobjective fuzzy clustering method for change detection in SAR images. Appl Soft Comput:1–11

  • Li F, Zeng Y, Luo J, Ma R, Wu B (2016a) Modeling grassland aboveground biomass using a pure vegetation index. Ecol Indic 62:279–288

    Google Scholar 

  • Li Z, Shi W, Myint SW, Lu P, Wang Q (2016b) Semi-automated landslide inventory mapping from bitemporal aerial photographs using change detection and level set method. Remote Sens Environ 175:215–230. https://doi.org/10.1016/j.rse.2016.01.003

    Google Scholar 

  • Lin Y, Yu J, Cai J, Sneeuw N, Li F (2018) Spatio-temporal analysis of wetland changes using a kernel extreme learning machine approach. Remote Sens 10:1129. https://doi.org/10.3390/rs10071129

    Google Scholar 

  • Liu S, Bruzzone L, Bovolo F, Zanetti M, Du P (2015) Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images. IEEE Trans Geosci Remote Sens 53:4363–4378. https://doi.org/10.1109/TGRS.2015.2396686

    Google Scholar 

  • Liu C, Cheng I, Zhang Y, Basu A (2017) Enhancement of low visibility aerial images using histogram truncation and an explicit Retinex representation for balancing contrast and color consistency. ISPRS J Photogramm Remote Sens 128:16–26

    Google Scholar 

  • Liu J, Gong M, Qin K, Zhang P (2018a) A deep convolutional coupling network for change detection based on heterogeneous optical and radar images. IEEE Trans Neural Networks Learn Syst 29:545–559. https://doi.org/10.1109/TNNLS.2016.2636227

    Google Scholar 

  • Liu Q, Hang R, Song H, Li Z (2018b) Learning multiscale deep features for high-resolution satellite image scene classification. IEEE Trans Geosci Remote Sens 56:117–126. https://doi.org/10.1109/TGRS.2017.2743243

    Google Scholar 

  • Liu T, Abd-Elrahman A, Zare A, Dewitt BA, Flory L, Smith SE (2018c) A fully learnable context-driven object-based model for mapping land cover using multi-view data from unmanned aircraft systems. Remote Sens Environ 216:328–344. https://doi.org/10.1016/j.rse.2018.06.031

    Google Scholar 

  • Liu Y, Ren Q, Geng J, Ding M (2018d) Efficient patch-wise semantic segmentation for large-scale remote sensing images. Sensors 18:1–16. https://doi.org/10.3390/s18103232

    Google Scholar 

  • Liu Z, Li G, Mercier G, He Y, Pan Q (2018e) Change detection in Heterogenous remote sensing images via homogeneous pixel transformation. IEEE Trans Image Process 27:1822–1834. https://doi.org/10.1109/TIP.2017.2784560

    Google Scholar 

  • Lu M, Hamunyela E, Verbesselt J, Pebesma E (2017) Dimension reduction of multi-spectral satellite image time series to improve deforestation monitoring. Remote Sens 9. https://doi.org/10.3390/rs9101025

  • Luo X, Zhang Z, Wu X (2016) A novel algorithm of remote sensing image fusion based on shift-invariant Shearlet transform and regional selection. Int J Electron Commun (AEÜ) 70:186–197

    Google Scholar 

  • Luo H, Liu C, Wu C, Guo X (2018) Urban change detection based on Dempster–Shafer theory for multitemporal very high-resolution imagery. Remote Sens 10:980. https://doi.org/10.3390/rs10070980

    Google Scholar 

  • Lv P, Zhong Y, Zhao J, Jiao H, Zhang L (2016) Change detection based on a multifeature probabilistic ensemble conditional random field model for high spatial resolution remote sensing imagery. IEEE Geosci Remote Sens Lett 13:1965–1969

    Google Scholar 

  • Ma C, Xia W, Chen F, Liu J, Dai Q, Jiang L et al (2017) A content-based remote sensing image change information retrieval model. Isprs Int J Geo-Information 6:1–17. https://doi.org/10.3390/ijgi6100310

    Google Scholar 

  • Ma Q, Su Y, Luo L, Li L, Kelly M, Guo Q (2018) Evaluating the uncertainty of Landsat-derived vegetation indices in quantifying forest fuel treatments using bi-temporal LiDAR data. Ecol Indic 95:298–310

    Google Scholar 

  • Marinelli D, Bovolo F, Bruzzone L (2017) A novel method for unsupervised multiple change detection in hyperspectral images based on binary spectral change vectors. 2017 9th Int work anal multitemporal remote Sens images. MultiTemp 2017:1–4. https://doi.org/10.1109/Multi-Temp.2017.8035239

    Google Scholar 

  • Marmanis D, Schindler K, Wegner JD, Galliani S, Datcu M, Stilla U (2018) Classification with an edge : improving semantic image segmentation with boundary detection. ISPRS J Photogramm Remote Sens 135:158–172

    Google Scholar 

  • Massarelli C (2018) Fast detection of significantly transformed areas due to illegal waste burial with a procedure applicable to landsat images. Int J Remote Sens 39:754–769. https://doi.org/10.1080/01431161.2017.1390272

    Google Scholar 

  • Miao Z, Fu K, Sun H, Sun X, Yan M (2018) Automatic water-body segmentation from high-resolution satellite images via deep networks. IEEE Geosci Remote Sens Lett 15:602–606. https://doi.org/10.1109/LGRS.2018.2794545

    Google Scholar 

  • Minu S, Shetty A (2015) A Comparative Study of Image Change Detection Algorithms in MATLAB. Int. Conf. WATER Resour. Coast. Ocean Eng. (ICWRCOE 2015), Aquat. Procedia, vol. 4, p. 1366–73. https://doi.org/10.1016/j.aqpro.2015.02.177

  • Mittal H, Saraswat M (2018) An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential Kbest gravitational search algorithm. Eng Appl Artif Intell 71:226–235

    Google Scholar 

  • Mohammadi A, Costelloe JF, Ryu D (2017) Application of time series of remotely sensed normalized difference water , vegetation and moisture indices in characterizing flood dynamics of large-scale arid zone fl oodplains. Remote Sens Environ 190:70–82

    Google Scholar 

  • Naidu MSR, Kumar PR, Chiranjeevi K (2017) Shannon and fuzzy entropy based evolutionary image thresholding for image segmentation. Alexandria Eng J:1–13

  • Narayan B, Bovolo F, Ghosh A, Bruzzone L (2014) Spatio-contextual fuzzy clustering with Markov random fi eld model for change detection in remotely sensed images. Opt Laser Technol 57:284–292

    Google Scholar 

  • Pandey BK, Khare D (2017) Analyzing and modeling of a large river basin dynamics applying integrated cellular automata and Markov model. Environ Earth Sci 76:1–12. https://doi.org/10.1007/s12665-017-7133-4

    Google Scholar 

  • Park H, Choi J, Park W, Park H (2018) Modified S2CVA algorithm using cross-sharpened images for unsupervised change detection. Sustainability 10:3301. https://doi.org/10.3390/su10093301

    Google Scholar 

  • Patil SD, Gu Y, Dias FSA, Stieglitz M, Turk G (2017) Predicting the spectral information of future land cover using machine learning. Int J Remote Sens 38:5592–5607. https://doi.org/10.1080/01431161.2017.1343512

    Google Scholar 

  • Pham LTH, Brabyn L (2017) Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS J Photogramm Remote Sens 128:86–97. https://doi.org/10.1016/j.isprsjprs.2017.03.013

    Google Scholar 

  • Pradhan R, Aygun RS, Maskey M, Ramachandran R, Cecil DJ (2018) Tropical cyclone intensity estimation using a deep convolutional neural network. IEEE Trans Image Process 27:692–702. https://doi.org/10.1109/TIP.2017.2766358

    Google Scholar 

  • Prakash S, Kumar A (2016) Evaluation of course change detection of Ramganga river using remote sensing and GIS, India. Weather Clim Extrem 13:68–72

    Google Scholar 

  • Prendes J, Chabert M, Pascal F, Giros A, Tourneret J-Y (2015) A new multivariate statistical model for change detection in images acquired by homogeneous and heterogeneous sensors. IEEE Trans Image Process 24:799–812. https://doi.org/10.1109/TIP.2014.2387013

    Google Scholar 

  • Qi Z, Yeh AG-O, Li X, Zhang X (2015) A three-component method for timely detection of land cover changes using polarimetric SAR images. ISPRS J Photogramm Remote Sens 107:3–21. https://doi.org/10.1016/j.isprsjprs.2015.02.004

    Google Scholar 

  • Qin D, Zhou X, Zhou W, Huang G, Ren Y, Horan B et al (2018) MSIM: a change detection framework for damage assessment in natural disasters. Expert Syst Appl 97:372–383. https://doi.org/10.1016/j.eswa.2017.12.038

    Google Scholar 

  • Qiu B, Chen G, Tang Z, Lu D, Wang Z, Chen C (2017) Assessing the three-north shelter Forest program in China by a novel framework for characterizing vegetation changes. ISPRS J Photogramm Remote Sens 133:75–88

    Google Scholar 

  • R JVCI, Hagag A, Fan X, El-samie FEA (2017) HyperCast : hyperspectral satellite image broadcasting with band ordering optimization. J Vis Commun Image Represent 42:14–27

    Google Scholar 

  • Radhika K, Varadarajan S (2018) A neural network based classification of satellite images for change detection applications. Cogent Eng 5:1–9

    Google Scholar 

  • Rahbani M, Pakhirehzan M (2018) Classifying east coasts of Hormozgan province using Shepard method and satellite imagery. Egypt J Remote Sensing Space Sci 21:335–344. https://doi.org/10.1016/j.ejrs.2017.12.002

    Google Scholar 

  • Rawat JS, Kumar M (2015) Monitoring land use / cover change using remote sensing and GIS techniques : a case study of Hawalbagh block , district Almora, Uttarakhand, India. Egypt J Remote Sensing Space Sci 18:77–84

    Google Scholar 

  • Sadeghi V, Farnood Ahmadi F, Ebadi H (2016) Design and implementation of an expert system for updating thematic maps using satellite imagery (case study: changes of Lake Urmia). Arab J Geosci 9:1–17. https://doi.org/10.1007/s12517-015-2301-x

    Google Scholar 

  • Sadeghi V, Farnood Ahmadi F, Ebadi H (2018) A new fuzzy measurement approach for automatic change detection using remotely sensed images. Meas J Int Meas Confed 127:1–14. https://doi.org/10.1016/j.measurement.2018.05.097

    Google Scholar 

  • Salmon BP, Holloway DS, Kleynhans W, Olivier JC, Wessels KJ (2017) Applying model parameters as a driving force to a deterministic nonlinear system to detect land cover change. IEEE Trans Geosci Remote Sens 55:7165–7176. https://doi.org/10.1109/TGRS.2017.2743218

    Google Scholar 

  • Sammouda R, Adgaba N, Touir A, Al-ghamdi A (2014) Agriculture satellite image segmentation using a modified artificial Hopfield neural network. Comput Hum Behav 30:436–441

    Google Scholar 

  • Seydi ST, Hasanlou M (2018) Sensitivity analysis of pansharpening in hyperspectral change detection. Appl Geomatics 10:65–75. https://doi.org/10.1007/s12518-018-0206-6

    Google Scholar 

  • Shakeri M, Dezfoulian MH, Khotanlou H, Barati AH, Masoumi Y (2016) Image contrast enhancement using fuzzy clustering with adaptive cluster parameter and sub-histogram equalization. Digit Signal Process 1:1–13

    Google Scholar 

  • Shi A, Gao G, Shen S (2016) Change detection of bitemporal multispectral images based on FCM and D-S theory. EURASIP J Adv Signal Process 2016:1–12. https://doi.org/10.1186/s13634-016-0397-0

    Google Scholar 

  • Singh A, Singh KK (2017) Satellite image classification using genetic algorithm trained radial basis function neural network, application to the detection of flooded areas. J Vis Commun Image Represent 42:173–181. https://doi.org/10.1016/j.jvcir.2016.11.017

    Google Scholar 

  • Solano-Correa YT, Bovolo F, Bruzzone L (2018) An approach for unsupervised change detection in multitemporal VHR images acquired by different multispectral sensors. Remote Sens 10:1–23. https://doi.org/10.3390/rs10040533

    Google Scholar 

  • Song W, Mu X, Ruan G, Gao Z, Li L, Yan G (2017) Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. Int J Appl Earth Obs Geoinf 58:168–176

    Google Scholar 

  • Su L, Gong M, Zhang P, Zhang M, Liu J, Yang H (2017) Deep learning and mapping based ternary change detection for information unbalanced images. Pattern Recogn:2–42

  • Sumaiya MN, Kumari RSS (2018) Unsupervised change detection of flood affected areas in SAR images using Rayleigh based Bayesian thresholding. IET Radar, Sonar Navig 12:515–522. https://doi.org/10.1049/iet-rsn.2017.0393

    Google Scholar 

  • Sumaiya MN, Shantha Selva Kumari R (2017a) Gabor filter based change detection in SAR images by KI thresholding. Optik (Stuttg) 130:114–122. https://doi.org/10.1016/j.ijleo.2016.11.040

    Google Scholar 

  • Sumaiya MN, Shantha Selva Kumari R (2017b) Satellite image change detection using Laplacian–Gaussian distributions. Wirel Pers Commun 97:4621–4630. https://doi.org/10.1007/s11277-017-4741-y

    Google Scholar 

  • Sun H, Wang Q, Wang G, Lin H, Luo P, Li J et al (2018) Optimizing kNN for mapping vegetation cover of arid and semi-arid areas using landsat images. Remote Sens 10. https://doi.org/10.3390/rs10081248

  • Suresh S, Lal S (2016) An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions. Expert Syst Appl 58:184–209

    Google Scholar 

  • Suresh S, Lal S (2017a) Modified differential evolution algorithm for contrast and brightness enhancement of satellite images. Appl Soft Comput J 61:622–641. https://doi.org/10.1016/j.asoc.2017.08.019

    Google Scholar 

  • Suresh S, Lal S (2017b) Multilevel thresholding based on chaotic Darwinian particle swarm optimization for segmentation of satellite images. Appl Soft Comput:2–40. https://doi.org/10.1016/j.asoc.2017.02.005

  • Swain S, Abeysundara S, Hayhoe K, Stoner AMK (2017) Future changes in summer MODIS-based enhanced vegetation index for the south-Central United States. Ecol Inform:3–33. https://doi.org/10.1016/j.ecoinf.2017.07.007

  • Testa S, Soudani K, Boschetti L, Borgogno Mondino E, EVI MODIS-d (2018) NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests. Int J Appl Earth Obs Geoinf 64:132–144. https://doi.org/10.1016/j.jag.2017.08.006

    Google Scholar 

  • Thakkar AK, Desai VR, Patel A, Potdar MB (2016) An effective hybrid classification approach using tasseled cap transformation (TCT) for improving classification of land use/land cover (LU/LC) in semi-arid region: a case study of Morva-Hadaf watershed, Gujarat, India. Arab J Geosci 9:1–13. https://doi.org/10.1007/s12517-015-2267-8

    Google Scholar 

  • Thakkar AK, Desai VR, Patel A, Potdar MB (2017) Post-classification corrections in improving the classification of land use/land cover of arid region using RS and GIS: the case of Arjuni watershed, Gujarat, India. Egypt J Remote Sens Sp Sci 20:79–89. https://doi.org/10.1016/j.ejrs.2016.11.006

    Google Scholar 

  • Tian D, Gong M (2018) A novel edge-weight based fuzzy clustering method for change detection in SAR images. Inf Sci (Ny) 467:415–430. https://doi.org/10.1016/j.ins.2018.08.015

    Google Scholar 

  • Touati R, Mignotte M (2018) An energy-based model encoding nonlocal pairwise pixel interactions for multisensor change detection. IEEE Trans Geosci Remote Sens 56:1046–1058. https://doi.org/10.1109/TGRS.2017.2758359

    Google Scholar 

  • Tuba M, Jordanski M, Arsic A (2016) Improved weighted thresholded histogram equalization algorithm for digital image contrast enhancement using the bat algorithm

  • Uchenna F, Timipre R, Chigozie E, Okpala-okaka C (2017) Geospatial assessment of vegetation status in Sagbama oilfield environment in the Niger Delta region, Nigeria. Egypt J Remote Sensing Space Sci 20:211–221

    Google Scholar 

  • Vázquez-jiménez R, Romero-calcerrada R, Novillo CJ, Ramos-bernal RN, Arrogante-funes P (2017) Applying the chi-square transformation and automatic secant thresholding to Landsat imagery as unsupervised change detection methods. J Appl Remote Sens 11:016016(1-14). https://doi.org/10.1117/1.JRS.11.016016

    Google Scholar 

  • Vicente-serrano SM, Camarero JJ, Olano JM, Martín-hernández N, Peña-gallardo M, Tomás-burguera M et al (2016) Diverse relationships between forest growth and the normalized difference vegetation index at a global scale. Remote Sens Environ 187:14–29

    Google Scholar 

  • Vignesh T, Thyagharajan KK, Murugan D, Sakthivel M, Pushparaj S (2016) A novel multiple unsupervised algorithm for land use/land cover classification. Indian J Sci Technol 9:1–12. https://doi.org/10.17485/ijst/2016/v9i42/99682

    Google Scholar 

  • Volpi M, Tuia D (2018) Deep multi-task learning for a geographically-regularized semantic segmentation of aerial images. ISPRS J Photogramm Remote Sens 144:48–60

    Google Scholar 

  • Wan X, Liu J, Li S, Dawson J, Yan H (2018) An illumination-invariant change detection method based on disparity saliency map for multitemporal optical remotely sensed images. IEEE Trans Geosci Remote Sens 99:1–14

    Google Scholar 

  • Wang Q, Shi W, Atkinson PM, Li Z (2014) Land cover change detection at subpixel resolution with a Hopfield neural network. IEEE J Sel Top Appl Earth Obs Remote Sens 8:1339–1352. https://doi.org/10.1109/JSTARS.2014.2355832

    Google Scholar 

  • Wang Y, Zhao F, Chen P (2017) A framework of spatiotemporal fuzzy clustering for land-cover change detection using SAR time series. Int J Remote Sens 38:450–466. https://doi.org/10.1080/01431161.2016.1268736

    Google Scholar 

  • Wang Q, Zhang X, Chen G, Dai F, Gong Y, Zhu K (2018a) Change detection based on faster R-CNN for high-resolution remote sensing images. Remote Sens Lett 9:923–932. https://doi.org/10.1080/2150704X.2018.1492172

    Google Scholar 

  • Wang X, Wang J, Che T, Huang X, Hao X, Li H (2018b) Snow cover mapping for complex mountainous forested environments based on a multi-index technique. IEEE J Sel Top Appl Earth Obs Remote Sens 11:1433–1441. https://doi.org/10.1109/JSTARS.2018.2810094

    Google Scholar 

  • Xiao P, Zhang X, Wang D, Yuan M, Feng X, Kelly M (2016) Change detection of built-up land : a framework of combining pixel-based detection and object-based recognition. ISPRS J Photogramm Remote Sens 119:402–414

    Google Scholar 

  • Xiong B, Chen JM, Kuang G (2012) A change detection measure based on a likelihood ratio and statistical properties of SAR intensity images. Remote Sens Lett 3:267–275. https://doi.org/10.1080/01431161.2011.572093

    Google Scholar 

  • Xu D, Chen R, Xing X, Lin W (2017) Detection of decreasing vegetation cover based on empirical orthogonal function and temporal unmixing analysis. Math Probl Eng 2017:1–10. https://doi.org/10.1155/2017/5032091

    Google Scholar 

  • Xue J, Su B (2017) Significant remote sensing vegetation indices : a review of developments and applications. J Sensors 2017:1–17

    Google Scholar 

  • Yan L, Xia W, Zhao Z, Wang Y (2018) A novel approach to unsupervised change detection based on hybrid spectral difference. Remote Sens 10:1–21. https://doi.org/10.3390/rs10060841

    Google Scholar 

  • Yang L, Jia K, Liang S, Wei X, Yao Y, Zhang X (2017) A robust algorithm for estimating surface fractional vegetation cover from landsat data. Remote Sens 9:1–20. https://doi.org/10.3390/rs9080857

    Google Scholar 

  • Ye S, Rogan J, Sangermano F (2018) Monitoring rubber plantation expansion using Landsat data time series and a Shapelet-based approach. ISPRS J Photogramm Remote Sens 136:134–143

    Google Scholar 

  • Yu X, Wu X, Luo C, Ren P (2017) Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework. GIScience Remote Sens 54:741–758. https://doi.org/10.1080/15481603.2017.1323377

    Google Scholar 

  • Yuan H, Wu C, Lu L, Wang X (2018) A new algorithm predicting the end of growth at five evergreen conifer forests based on nighttime temperature and the enhanced vegetation index. ISPRS J Photogramm Remote Sens 144:390–399

    Google Scholar 

  • Zanchetta A, Bitelli G, Karnieli A (2016) Monitoring desertification by remote sensing using the Tasselled cap transform for long-term change detection. Nat Hazards 83:223–237. https://doi.org/10.1007/s11069-016-2342-9

    Google Scholar 

  • Zanotta DC, Zortea M, Ferreira MP (2018) A supervised approach for simultaneous segmentation and classification of remote sensing images. ISPRS J Photogramm Remote Sens 142:162–173. https://doi.org/10.1016/j.isprsjprs.2018.05.021

    Google Scholar 

  • Zhang P, Gong M, Su L, Liu J, Li Z (2016) Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS J Photogramm Remote Sens 116:24–41. https://doi.org/10.1016/j.isprsjprs.2016.02.013

    Google Scholar 

  • Zhang P, Gong M, Su L, Liu J, Li Z (2017a) Feature learning and change feature classification based on deep learning for ternary change detection in SAR images. ISPRS J Photogramm Remote Sens 129:212–225. https://doi.org/10.1016/j.isprsjprs.2016.02.013

    Google Scholar 

  • Zhang X, Xiao P, Feng X, Yuan M (2017b) Separate segmentation of multi-temporal high-resolution remote sensing images for object-based change detection in urban area. Remote Sens Environ 201:243–255. https://doi.org/10.1016/j.rse.2017.09.022

    Google Scholar 

  • Zhao B, Duan A, Ata-ul-karim ST, Liu Z, Chen Z, Gong Z et al (2018) Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. Eur J Agron 93:113–125

    Google Scholar 

  • Zheng Z, Zeng Y, Li S, Huang W (2016) A new burn severity index based on land surface temperature and enhanced vegetation index. Int J Appl Earth Obs Geoinf 45:84–94

    Google Scholar 

  • Zhuang H, Deng K, Yu Y, Fan H (2017) An approach based on discrete wavelet transform to unsupervised change detection in multispectral images. Int J Remote Sens 38:4914–4930. https://doi.org/10.1080/01431161.2017.1331475

    Google Scholar 

  • Zhuang H, Fan H, Deng K, Yao G (2018) A spatial-temporal adaptive neighborhood-based ratio approach for change detection in SAR images. Remote Sens 10:1–19. https://doi.org/10.3390/rs10081295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Anitha.

Additional information

Communicated by: H. A. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asokan, A., Anitha, J. Change detection techniques for remote sensing applications: a survey. Earth Sci Inform 12, 143–160 (2019). https://doi.org/10.1007/s12145-019-00380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-019-00380-5

Keywords

Navigation