[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Towards a Digital Earth: using archetypes to enable knowledge interoperability within geo-observational sensor systems design

  • Methodology Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Earth System Science (ESS) observational data are often inadequately semantically enriched by geo-observational information systems to capture the true meaning of the associated data sets. Data models underpinning these information systems are often too rigid in their data representation to allow for the ever-changing and evolving nature of ESS domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in a computable way. Object oriented techniques that are typically employed to model data in a complex domain (with evolving domain concepts) can unnecessarily exclude domain specialists from the design process, invariably leading to a mismatch between the needs of the domain specialists, and how the concepts are modelled. In many cases, an over simplification of the domain concept is captured by the computer scientist. This paper proposes that two-level modelling methodologies developed by health informaticians to tackle problems of domain specific use-case knowledge modelling can be re-used within ESS informatics. A translational approach to enable a two-level modelling process within geo-observational sensor systems design is described. We show how the Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard can act as a pragmatic solution for a stable reference-model (necessary for two-level modelling), and upon which more volatile domain specific concepts can be defined and managed using archetypes. A rudimentary use-case is presented, followed by a worked example showing the implementation methodology and considerations leading to an O&M based, two-level modelling design approach, to realise semantically rich and interoperable Earth System Science based geo-observational sensor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Listing 1
Listing 2
Fig. 8

Similar content being viewed by others

Abbreviations

ADL :

archetype description language

AM :

archetype model

AQL :

archetype query language

CEN :

european committee for standardization (comité européen de normalisation)

CEM :

clinical element model

COP :

common operational picture

DOLCE :

descriptive ontology for linguistic and cognitive engineering

ECHO :

earth observing system clearing house

EHR :

electronic healthcare record

EO :

earth observation

ESS :

earth system science

INSPIRE :

infrastructure for spatial information in europe

ISO :

international organization for standardization

JSON :

javascript object notation

MSDI :

marine spatial data infrastructure

NASA :

national aeronautics and space administration

NERC :

natural environment research council

NTNU :

norwegian university of science and technology

O&M :

observations and measurements

OGC :

open geospatial consortium

OPT :

operational templates

PSC :

planning support concept

RM :

reference model

SOS :

sensor observation service

SDI :

spatial data infrastructure

SSNO :

semantic sensor network ontology

SWEET :

semantic web for earth and environment technology

TC :

technical committee

tPOT :

towards people oriented technologies

XML :

extensible markup language

References

  • AQL, Archetype Query Language 1.0.3 (2015) Available: http://www.openehr.org/releases/QUERY/latest/docs/AQL/AQL.html

  • Beale T (2002) Archetypes: constraint-based domain models for future-proof information systems. OOPSLA workshop on behavioural semantics

  • Beale T (2003) Towards design principles for health information systems. Int J Med Inform

  • Beale T, Heard S (2007) Archetype definition language. The openEHR Foundation, London

    Google Scholar 

  • Beaulieu SE, Fox PA, Di Stefano M et al (2016) Toward cyber infrastructure to facilitate collaboration and reproducibility for marine integrated ecosystem assessments. Earth Sci Inform 10(1):85–97. https://doi.org/10.1007/s12145-016-0280-4

    Article  Google Scholar 

  • Bernstein K, Tvede I, Petersen J, Bredegaard K (2009) Can openEHR archetypes be used in a national context? The Danish archetype proof-of-concept project. In: MIE, pp 147–151

    Google Scholar 

  • Bisbal J, Berry D (2009) Archetype alignment-a two-level driven semantic matching approach to interoperability in the clinical domain. In: HEALTHINF, pp 216–221

  • Blobel B, Moner D, Hildebrand C, Robles M (2010) Standardized and flexible health data management with an archetype driven EHR system (EHRflex). In: seamless care, safe care: the challenges of interoperability and patient safety in health care: proceedings of the EFMI special topic conference, June 2–4, Reykjavik, Iceland, vol 155. IOS Press, p 212

  • Blower JD, Masó J, Díaz D, Roberts CJ et al (2015) Communicating thematic data quality with web map services. ISPRS Int J Geo-Information 4(4):1965–1981. https://doi.org/10.3390/ijgi4041965

    Article  Google Scholar 

  • Boegl K, Adlassnig K, Hayashi Y, Rothenfluh TE, Leitich H (2004) Knowledge acquisition in the fuzzy knowledge representation framework of a medical consultation system. Artif Intell Med 30(1):1–26. https://doi.org/10.1016/S0933-3657(02)00073-8

    Article  Google Scholar 

  • Botts, M., Percivall, G., Reed, C. & Davidson, J. (2008) OGC® sensor web enablement: overview and high level architecture in GeoSensor networks. Springer, Berlin pp 175–190

  • Bröring A, Stasch C, Echterhoff J (2012) OGC sensor observation service interface standard. Open Geospatial Consortium Interface Standard, pp 12–006

  • Chen X (2016) A two-level identity model to support interoperability of identity information in electronic health record systems. Thesis submitted for the degree of Doctor of Philosophy to Dublin Institute of Technology

    Google Scholar 

  • Chen, R. & Klein, G. (2007) The openEHR Java reference implementation project, Studies in health technology and informatics, vol. 129, no. 1, pp. 58

  • Chen R, Garde S, Beale T, Nyström M, Karlsson D, Klein GO, Åhlfeldt H (2008) An archetype-based testing framework. Stud Health Technol Inform 136:401

    Google Scholar 

  • Chen R, Klein GO, Sundvall E, Karlsson D, Åhlfeldt H (2009) Archetype-based conversion of EHR content models: pilot experience with a regional EHR system. BMC Med Inform Decis Mak 9(1):33. https://doi.org/10.1186/1472-6947-9-33

    Article  Google Scholar 

  • Clifford D, Alegre R, Bennett V, Blower et al (2016) Capturing and sharing our collective expertise on climate data: the CHARMe project. Bull Am Meteorol Soc 97(4):531–539. https://doi.org/10.1175/BAMS-D-14-00189.1

    Article  Google Scholar 

  • Compton M, Barnaghi P, Bermudez L, García-Castro R, Corcho O, Cox S, Graybeal J, Hauswirth M, Henson C, Herzog A, Huang V, Janowicz K, Kelsey WD, Le Phuoc D, Lefort L, Leggieri M, Neuhaus H, Nikolov A, Page K, Passant A, Sheth A, Taylor K (2012) The SSN ontology of the W3C semantic sensor network incubator group. Web Semant Sci Serv Agents World Wide Web 17:25-32

    Article  Google Scholar 

  • Cox S (2006) Observations and measurements. Open Geospatial Consortium best practices document. Open Geospatial Consortium

  • Cox S (2015a) Ontology alignment - is PROV-O good enough? Open Geospatial Consortium GeoMatics Summit, Boulder

    Google Scholar 

  • Cox S (2015b) Pitfalls in alignment of observation models resolved using PROV as an upper ontology. AGU Fall Meeting Abstracts, In

    Google Scholar 

  • Cox S, Taylor P (2015) OGC observations and measurements JSON implementation. Open Geospatial Consortium, Tech. Rep. Discussion Paper 15-100r1. [Online]. Available: http://www.opengis.net/doc/dp/om-json/

  • Craglia M, de Bie K, Jackson D, Pesaresi M, Remetey-Fülöpp G, Wang C, Annoni A, Bian L, Campbell F, Ehlers M, van Genderen J, Goodchild M, Guo H, Lewis A, Simpson R, Skidmore A, Woodgate P (2012) Digital earth 2020: towards the vision for the next decade. Int J Digit Earth 5(1):4–21. https://doi.org/10.1080/17538947.2011.638500

    Article  Google Scholar 

  • Di L, Yang W, Deng M, Deng D, McDonald K (2002) Interoperable access of remote sensing data through NWGISS, vol 1. IEEE, Toronto pp 255-257. https://doi.org/10.1109/IGARSS.2002.1025004

  • Diviacco P, Leadbetter A (2017) Balancing formalization and representation in cross-domain data management for sustainable development. Oceanographic and marine cross-domain data management for sustainable development. IGI Global, pp 23–46, DOI: https://doi.org/10.4018/978-1-5225-0700-0.ch002

  • Diviacco P, De Cauwer K, Leadbetter A, Sorribas J, Stojanov Y, Busato A, Cova A (2015) Bridging semantically different paradigms in the field of marine acquisition event logging. Earth Sci Inf 8(1):135–146. https://doi.org/10.1007/s12145-014-0192-0

    Article  Google Scholar 

  • ECHO, Earth Observing System Clearing House (2005) Overview. Available: http://www.echo.eos.nasa.gov/overview/

  • EO/Copernicus overview (2016) Available: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview3

  • Gahegan M, Pike W (2006) A situated knowledge representation of geographical information. Trans GIS 10(5):727–749. https://doi.org/10.1111/j.1467-9671.2006.01025.x

    Article  Google Scholar 

  • Garde S, Hovenga EJ, Granz J, Foozonkhah S, Heard S (2007) Managing archetypes for sustainable and semantically interoperable electronic health records. eJHI Electron J Health Inform 2(2):10

    Google Scholar 

  • Garde S, Chen R, Leslie H, Beale T, McNICOLL I, Heard S (2009) Archetype-based knowledge management for semantic interoperability of electronic health records. MIE, In, pp 1007–1011

    Google Scholar 

  • GEO, Group on Earth Observations (2016) Available: https://www.earthobservations.org/index.php

  • Goodchild MF (2006) GIScience ten years after ground truth. Trans GIS (10)5:687–692

  • Gore A (1998) The digital earth: understanding our planet in the 21st century. Aust Surv 43(2):89–91. https://doi.org/10.1080/00050348.1998.10558728

    Article  Google Scholar 

  • Grimson J et al (1996) Synapses - federated healthcare record server. Procs. Of MIE 96, Copenhagen, J Brender et al. IOS Press, Amsterdam, pp 695–699

    Google Scholar 

  • Grimson J, Grimson W, Berry D, Stephens G, Felton E, Kalra D, Toussaint P, Weier OW (1998) A CORBA-based integration of distributed electronic healthcare records using the synapses approach. IEEE Trans Inf Technol Biomed 2(3):124–138. https://doi.org/10.1109/4233.735777

    Article  Google Scholar 

  • Grimson J, Grimson W, Hasselbring W (2000) The SI challenge in health care. Commun ACM 43(6):48–55. https://doi.org/10.1145/336460.336474

    Article  Google Scholar 

  • Grossner KE, Goodchild MF, Clarke KC (2008) Defining a digital earth system. Trans GIS 12(1):145–160. https://doi.org/10.1111/j.1467-9671.2008.01090.x

    Article  Google Scholar 

  • Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5(2):199–220. https://doi.org/10.1006/knac.1993.1008

    Article  Google Scholar 

  • Hart JK, Martinez K (2006) Environmental Sensor Networks: a revolution in the earth system science? Earth Sci Rev (78)3:177–191

  • Horsburgh JS, Tarboton DG, Maidment DR, Zaslavsky I (2008) A relational model for environmental and water resources data. Water Resour Res 44(5). https://doi.org/10.1029/2007WR006392

  • Horsburgh JS, Aufdenkampe AK, Mayorga E, Lehnert KA, Hsu L, Song L, Jones AS, Damiano SG, Tarboton DG, Valentine D, Zaslavsky I (2016) Observations data model 2: a community information model for spatially discrete earth observations. Environ Model Softw 79:55–74. https://doi.org/10.1016/j.envsoft.2016.01.010

    Article  Google Scholar 

  • Hoy D, Hardiker NR, McNicoll IT, Westwell P, Bryans A (2009) Collaborative development of clinical templates as a national resource. Int J Med Inform 78(Suppl 1):S95–100

    Google Scholar 

  • Hsu L, Mayorga E, Horsburgh J, Carter M, Lehnert K, Brantley S (2017) Enhancing interoperability and capabilities of earth science data using the observations data model 2 (ODM2). Data Sci J 16. https://doi.org/10.5334/dsj-2017-004

  • INSPIRE Directive (2007) Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE)

  • ISO/TC211 (2011) Geographic information -- observations and measurements

  • ISO/TC215 (2006) Health informatics-electronic health record communication-part1: reference model

  • ISO/TC215 (2008) Health informatics-electronic health record communication-part2: archetype interchange specification

  • ISO/TC215 (2009a) Health informatics-electronic health record communication-part 3: reference archetypes and term lists

  • ISO/TC215 (2009b) Health informatics-electronic health record communication-part 4: security

  • Kalra D, Anthony A, O’Connor A, Patterson D et al (2001) Design and implementation of a federated health record server medical Records Institute for the Centre for advancement of electronic records ltd, pp 1–13

  • Kalra D, Beale T, Heard S (2005) The openEHR foundation. Stud Health Technol Inform 115:153–173

    Google Scholar 

  • Kämpgen B, Riepl D, Klinger J (2014) SMART research using linked data-sharing research data for integrated water resources management in the lower Jordan valley. SePublica

  • Klien E, Annoni A, Marchetti PG (2009) The GIGAS project–an action in support to GEOSS, INSPIRE, and GMES

  • Leadbetter A, Lowry R, Clements DO (2012) April. The NERC vocabulary server: version 2.0. Geophys Res Abstr 14

  • Leadbetter A, Smyth D, Fuller R, O’Grady E, Shepherd A (2016) Where big data meets linked data: applying standard data models to environmental data streams. 2016 I.E. International Conference on Big Data

  • Leslie H (2008) International developments in openEHR archetypes and templates. Health Inform Manag J 37(1):38–39. https://doi.org/10.1177/183335830803700104

    Article  Google Scholar 

  • Lezcano L, Santos L, García-Barriocanal E (2013) Semantic integration of sensor data and disaster management systems: the emergency archetype approach. Int J Distributed Sens Netw 2013

  • Mackenzie FT (2010) Our changing planet: an introduction to earth system science and global environmental change, 4th edn. Prentice Hall, New Jersey

  • Maldonado JA, Moner D, Boscá D, Fernández-Breis JT, Angulo C, Robles M (2009) LinkEHR-Ed: a multi-reference model archetype editor based on formal semantics. Int J Med Inform 78(8):559–570. https://doi.org/10.1016/j.ijmedinf.2009.03.006

    Article  Google Scholar 

  • Masó J, Serral I, Pons X (2011) GEOVIQUA: a FP7 scientific project to promote spatial data quality usability: metadata, search and visualization. In: Proceedings 7th International Symposium on Spatial Data Quality, October 12–14 2011, Coimbra, Portugal

  • Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A, Schneider L (2003) Dolce: a descriptive ontology for linguistic and cognitive engineering. WonderWeb project, deliverable D17 v2, 1, pp 75-105

  • NASA Advisory Council, Earth System Sciences Committee (1986) Earth system science overview: a program for global change. NASA Conf Publ. Washington, D.C.

  • Osen LO, Wang H, Hjelmervik KB, Schøyen H (2017) Organizing data from industrial internet of things for maritime operations. In Oceans' 17 MTS/IEEE Conference

  • Peirce, C.S. (1935) Collected papers. Vol. VI. Scientific metaphysics (Ed. by C. Hartshorne and P. Weiss.), Harvard University Press, London

  • Pfister R, Ullman R, Wichmann K, Perkins DC (2001) ECHO responds to NASA's Earth science user community

  • Probst F, Gordon A, Dornelas I (2006) OGC discussion paper: ontology-based representation of the OGC observations and measurements model. Institute for Geoinformatics (ifgi)

  • Raskin RG, Pan MJ (2005) Knowledge representation in the semantic web for earth and environmental terminology (SWEET). Comput Geosci 31(9):1119–1125. https://doi.org/10.1016/j.cageo.2004.12.004

    Article  Google Scholar 

  • Rea S, Pathak J, Savova G, Oniki TA, Westberg L, Beebe CE, Tao C, Parker CG, Haug PJ, Huff SM, Chute CG (2012) Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: the SHARPn project. J Biomed Inform 45(4):763–771. https://doi.org/10.1016/j.jbi.2012.01.009

    Article  Google Scholar 

  • Riepl D (2014) Knowledge-based decision support for integrated water resources management with an application for Wadi Shueib, Jordan. KIT Scientific Publishing, Karlsruhe

    Google Scholar 

  • Schaap DM, Lowry RK (2010) SeaDataNet–Pan-European infrastructure for marine and ocean data management: unified access to distributed data sets. Int J Digital Earth 3(S1):50–69. https://doi.org/10.1080/17538941003660974

    Article  Google Scholar 

  • Stacey P, Berry D (2015) Applying two-level modelling to remote sensor systems design to enable future knowledge generation. IEEE YP Conference in Remote Sensing, Barcelona, Abstracts, In

    Google Scholar 

  • Sundvall E, Qamar R, Nyström M, Forss M, Petersson H, Karlsson D, Åhlfeldt H, Rector A (2008) Integration of tools for binding archetypes to SNOMED CT. BMC Med Inform Decis Making 8(1):1

    Article  Google Scholar 

  • Tavra M, Jajac N, Cetl V (2017) Marine spatial data infrastructure development framework: Croatia case study. ISPRS Int J Geo-Information 6(4):117. https://doi.org/10.3390/ijgi6040117

    Article  Google Scholar 

  • Westerbeeke H, Secretariaat G, Geneve Z (2006) Group on Earth Observations (GEO), RUIMTEVAART, vol 55, no 4, pp 10

  • Wolf L, Hötzl H (2011) SMART-IWRM: integrated water resources management in the lower Jordan Rift Vaalley: project report phase 1. KIT Scientific Publishing, Karlsruhe

    Google Scholar 

  • Wölger S, Siorpaes K, Bürger T, Simperl E, Thaler S, Hofer C (2011) A survey on data interlinking methods. Technical report, Semantic Technology Institute, Innsbruck

    Google Scholar 

  • Wollersheim D, Sari A, Rahayu W (2009) Archetype-based electronic health records: a literature review and evaluation of their applicability to health data interoperability and access. Health Inform Manag J 38(2):7–17. https://doi.org/10.1177/183335830903800202

    Article  Google Scholar 

  • Yuan M Mark DM, Egenhofer MJ, Peuquet DJ.(2005) A research agenda for geographic information science. Extensions to geographic representation. In: McMaster RB, Usery EI (eds) Boca Raton, CRC Press: pp 129–56

Download references

Acknowledgements

The authors would like thank Adam Leadbetter from the Marine Institute, Ireland, for review comments and constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Stacey.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stacey, P., Berry, D. Towards a Digital Earth: using archetypes to enable knowledge interoperability within geo-observational sensor systems design. Earth Sci Inform 11, 307–323 (2018). https://doi.org/10.1007/s12145-018-0340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-018-0340-z

Keywords

Navigation