[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Self-dual and LCD double circulant and double negacirculant codes over a family of finite rings \( \mathbb {F}_{q}[v_{1}, v_{2},\dots ,v_{t}]\)

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper, we discuss double circulant and double negacirculant codes over a family of finite rings \(R_{t} = \mathbb {F}_{q} + v_{1} \mathbb {F}_{q} + v_{2}\mathbb {F}_{q} + {\cdots } + v_{t}\mathbb {F}_{q}\); \(({v_{i}^{2}} = v_{i}, v_{i}v_{j} = v_{j}v_{i}=0, i,j= 1,2,\ldots ,t, i \neq j)\), where q is an odd prime power. We obtain necessary and sufficient conditions for double circulant codes (double negacirculant codes) to be self-dual codes and to be linear codes with complementary dual (or LCD codes) codes and study the algebraic structure of self-dual and LCD double circulant (double negacirculant codes) codes. We derive a formula to determine the total number of self-dual and LCD double circulant codes (double negacirculant codes) over the ring Rt. We also find distance bounds for double circulant codes over Rt. Moreover, we use a Gray map to prove that the families of self-dual and LCD double circulant codes under this Gray map are asymptotically good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

Abbreviations

LCD:

Linear with complementary dual

CRT:

Chinese Remainder Theorem

References

  1. Alahmandi, A., Güneri, C., Özdemir, B., Shoaib, H., Solé, P.: On self-dual double negacirculant codes. Discret. Appl. Math. 222, 205–212 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alahmadi, A., Özdemir, F., Solé, P.: On self-dual double circulant codes. Des. Codes, Cryptogr. 86, 1257–1265 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Askali, M., Nouh, S., Azouaout, A., Belkasmi, M.: Discovery of good double and tripal circulant codes using multiple impulse. Adv. Comput. Math. 5, 141–148 (2013)

    Google Scholar 

  4. Assmus, E.F., Mattson, H.F., Turyn, R.: Cyclic codes. AF Camb. Res. Labs Bedford, 66–348 (1966)

  5. Bosma, W., Cannon, J., Fieker, C., Steel, A. (eds.): Handbook of Magma functions, Edition 2.19 (2013)

  6. Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun 10, 131–150 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cengellenmis, Y., Dertli, A., Dougherty, S.: Codes over an infinite family of rings with a Gray map. Des. Codes Crypt. 72(3), 559–580 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cengellenmis, Y., Dougherty, S.: Cyclic codes over Ak. In: Proceedings of ACCT, Pomorie, Bulgaria (2012)

  9. Chen, C.L., Peterson, W.W., Weldon, E.J.: Some results on quasi-cyclic codes. Inf. Control 15, 407–423 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, X., Cao, X., Qian, L.: Linear complementary dual codes and double circulant codes over a semi-local ring. Adv. Math. Commun, 1–12. https://doi.org/10.3934/amc.2022055 (2022)

  11. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  12. Dinh, H.Q., Bag, T., Pathak, S., Upadhyay, A.K., Chinnakum, W.: Quantum codes obtained from constacyclic codes over a family of finite ring \(\mathbb {F}_{p}[u_{1}, u_{2}, \dots , u_{s}]\). IEEE Access 8, 194082–194091 (2020)

    Article  Google Scholar 

  13. Dougherty, S., Yildiz, B., Karadeniz, S.: Codes over Rk, Gray maps and their binary images. Finite Fields Appl. 17(3), 205–219 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de

  15. Güneri, C., Özkaya, B., Solé, P.: Quasi-cyclic complementary dual codes. Finite Fields Their Appl. 42, 67–80 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hammons, A., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \(\mathbb {Z}_{4}\) linearity of kerdock, preparata, goethals and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, D., Shi, M., Solé, P.: Double circulant self-dual and LCD, codes over \(\mathbb {Z}_{p^{2}}\). Int. J. Found. Comput. 30, 407–416 (2019)

    Article  MATH  Google Scholar 

  18. Huffman, W.C, Pless, V.: Fundamentals of Error Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  19. Irwansyah, Suprijanto, D.: Structure of linear codes over the ring Bk. J. Appl. Math. Comput. 58, 755–775 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Irwansyah, Barra, A., Alamsyah, I.M., Muchlis, A., Suprijanto, D.: Skew-cyclic codes over Bk. J. Appl. Math. Comput. 58, 69–84 (2018)

    Article  MATH  Google Scholar 

  21. Kasami, T.: A Gilbert-Varshamov bound for quasi-cyclic codes of rate \(\frac {1}{2}\). IEEE Trans. Inf. Theory 20(5), 679–679 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  23. Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes I: Finite Fields. IEEE Trans. Inf. Theory 47, 2751–2760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes II: Chain Rings. Des. Codes, Cryptogr. 30, 113–130 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mesnager, S., Tang, C.: Fast algebraic immunity of Boolean functions and LCD codes. IEEE Trans. Inf. Theory 67(7), 4828–4837 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Martinez-Perez, C., Willems, W.: Is the class of cyclic codes asymptotically good. IEEE Trans. Inf. Theory 52, 696–700 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Roth, R.M., Lempel, A.: Application of circulant matrices to the construction and decoding of linear codes. IEEE Trans. Inf. Theory 36, 1157–1163 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shi, M., Huang, D., Sok, L., Solé, P.: Double circulant LCD codes over \(\mathbb {Z}_{4}\). Finite Fields Appl. 58, 133–144 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shi, M., Zhu, H., Qian, L., Sok, S., Solé, P.: On self-dual and LCD double circulant and double negacirculant codes over \(\mathbb {F}_{q} + u \mathbb {F}_{q}\). Crypogr. Commun. 12, 53–70 (2020)

    Article  MATH  Google Scholar 

  30. Ting, Y., Shixin, Z., Xiaoshan, K.: On self-dual and LCD double circulant codes over a non-chain ring. Chin. J. Electron. 28, 1018–1024 (2019)

    Article  Google Scholar 

  31. Yadav, S., Islam, H., Prakash, O., Solé, P.: Self-dual and LCD double circulant and double negacirculant codes over \(\mathbb {F}_{q} + u \mathbb {F}_{q} + v \mathbb {F}_{q}\). J. Appl. Math. Comp. 67, 689–705 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers who have given us helpful comments to improve the manuscript. A part of this paper was written during a stay of H. Q. Dinh and B. P. Yadav in the Vietnam Institute For Advanced Study in Mathematics (VIASM) in Summer 2022, they would like to thank the members of VIASM for their hospitality. B. P. Yadav also wants to thank CSIR for the financial support, file number 09/1023(0018)/2016 EMR-I. T. Bag’s research was supported by The Fields Institute when he was a postdoc fellow at Carleton University. D. Panario is partially funded by the Natural Science and Engineering Research Council of Canada, reference number RPGIN-2018-05328. A. K. Upadhaya thanks SERB DST for their support under the MATRICS scheme with file number MTR/2020/000006.

Funding

Funding details are provided in the acknowledgements.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Tushar Bag.

Ethics declarations

Ethics approval and consent to participate

No experiment/s was carried out on (i) live vertebrates (or higher invertebrates), (ii) humans or (iii) human samples that include an unambiguous statement within the method.

Consent for Publication

We give consent to publish the paper once it is accepted.

Competing interests

The authors declare no competing interests.

Conflict of Interests

There is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, H.Q., Yadav, B.P., Bag, T. et al. Self-dual and LCD double circulant and double negacirculant codes over a family of finite rings \( \mathbb {F}_{q}[v_{1}, v_{2},\dots ,v_{t}]\). Cryptogr. Commun. 15, 529–551 (2023). https://doi.org/10.1007/s12095-022-00616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-022-00616-0

Keywords

Mathematics Subject Classification (2010)

Navigation