Abstract
In this short paper, we determine the minimal generating set of 1-generator generalized quasi-cyclic codes over \(\mathbb {Z}_{4}\). We also determine their rank and introduce a lower bound for the minimum distance of free 1-generator generalized quasi-cyclic codes. Further, we construct some new \(\mathbb {Z}_{4}\)-linear codes and we obtain some good binary nonlinear codes using the usual Gray map.
References
Aydin, N., Asamov, T.: The \(\mathbb {Z}_{4}\) Database [Online]. Available: http://z4codes.info/. accessed on 28.08.2015
Aydin, N., Ray-Chaudhuri, D.K.: Quasi cyclic codes over \(\mathbb {Z}_{4}\) and some new binary codes. IEEE Trans. Inform. Theory 48, 2065–2069 (2009)
Bosma, W., Cannon, J., Playoust: The Magma algebra system. J. Symb. Comput. 24, 235–265 (1997)
Cao, Y.: Generalized quasi-cyclic codes over Galois rings: structural properties and enumeration. Appl. Algebra Eng. Commun. Comput. 22, 219–233 (2011)
Cao, Y.: Structural properties and enumeration of 1-generator generalized quasi-cyclic codes. Des. Codes Cryptogr. 60, 67–79 (2011)
Esmaeili, M., Yari, S.: Generalized quasi-cyclic codes: Structural properties and codes construction. Appl. Algebra Eng. Commun. Comput. 20, 159–173 (2009)
Gao, J., Shi, M., Wu, T., Fu, F.-W.: On double cyclic codes over \(\mathbb {Z}_{4}\). arXivpreprint, arXiv:1501.01360v1 (2015)
Gao, J., Fu, F.-W., Shen, L., Ren, W.: Some results on generalized quasi-cyclic codes over \(\mathbb {F}_{q}+u\mathbb {F}_{q}\). IEICE Trans. Fundamentals 97, 1005–1011 (2014)
Grassl, M.: Table of Bounds on Linear Codes [Online]. Available: http://www.codetables.de/. accessed on 14.05.2015
Hammons, J., Kumar, P.V., Calderbank, A.R., Sloane, N.J., Sol é, P.: The \(\mathbb {Z}_{4}\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)
Van Lint, J.H.: Introduction to Coding Theory. Springer-Verlag, Berlin (1999)
Pless, V., Qian, Z.: Cyclic codes and quadratic residue codes over \(\mathbb {Z}_{4}\). IEEE Trans. Inform. Theory 42, 1594–1600 (1996)
Siap, I., Abualrub, T., Aydin, N.: Quaternary quasi-cyclic codes with even length components. Ars Combinatoria 101, 425–434 (2011)
Siap, I., Kulhan, N.: The structure of generalized quasi-cyclic codes. Appl. Math. E-Notes 5, 24–30 (2005)
Wan, Z.-X.: Quaternary Codes. World Scientific, Singapore (1997)
Acknowledgments
This research is supported by the National Key Basic Research Program of China (973 Program Grant No. 2013CB834204), the National Natural Science Foundation of China (Nos. 61571243, 61171082 and 61301137).
Author information
Authors and Affiliations
Corresponding author
Additional information
The first two authors contributed equally to this work.
Rights and permissions
About this article
Cite this article
Wu, T., Gao, J. & Fu, FW. 1-generator generalized quasi-cyclic codes over \(\mathbb {Z}_{4}\) . Cryptogr. Commun. 9, 291–299 (2017). https://doi.org/10.1007/s12095-015-0175-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-015-0175-0
Keywords
- 1-generator generalized quasi-cyclic codes
- New \(\mathbb {Z}_{4}\)-linear codes
- Gray map
- Good binary nonlinear codes