[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A lattice-based minimal partial realization algorithm for matrix sequences of varying length

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper we first extend a minimal partial realization algorithm from vector sequences to matrix sequences of equal length by means of a lattice basis reduction algorithm over polynomial rings. We also give all minimal partial realizations for such matrix sequences and a sufficient and necessary condition for the uniqueness issue. Then we improve the above algorithm to solve the minimal partial realization problem for matrix sequences of varying length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoulas, A.C.: On recursiveness and related topics in linear systems. IEEE Trans. Automat. Contr. 31, 1121–1135 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Antoulas, A.C.: Recursive modeling of discrete-time time series. In: Van Dooren, P., Wyman, B. (eds.) Linear Algebra for Control Theory, IMA, vol. 62, pp. 1–20 (1994)

  3. Bultheel, A., De Moor, B.: Rational approximation in linear systems and control. J. Comput. Appl. Math. 121, 355–378 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dawson, E., Simpson, L.: Analysis and design issues for synchronous stream ciphers. In: Niederreiter, H. (ed.) Coding Theory and Cryptology, pp. 49–90. World Scientific, Singapore (2002)

    Chapter  Google Scholar 

  5. Dickinson, B.W., Morf, M., Kailath, D.: A minimal realization algorithm for matrix sequences. IEEE Trans. Automat. Contr. 19, 31–38 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ding, C.S.: Proof of Massey’s conjectured algorithm. In: Advances in Cryptology. Lecture Notes in Computer Science, vol. 330, pp. 345–349. Springer, Berlin (1988)

    Google Scholar 

  7. ECRYPT stream cipher project. Report 2006/060 (2006). Available at http://www.ecrypt.eu.org/stream

  8. Feng, G.L., Tzeng, K.K.: A generalization of the Berlekamp–Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes. IEEE Trans. Inf. Theory 37, 1274–1287 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Forney, G.D.: Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J. Control 13, 493–520 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gragg, W.B., Lindquist, A.: On the partial realization problem. Linear Algebra Appl. 50, 277–319 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hawkes, P., Rose, G.G.: Exploiting multiples of the connection polynomial in word-oriented stream ciphers. In: Okamoto, T. (ed.) Advances in Cryptology—ASIACRYPT 2000. Lecture Notes in Computer Science, vol. 1976, pp. 303–316. Springer, Berlin (2000)

    Google Scholar 

  12. Kalman, R.E.: On minimal partial realizations of a linear input/output map. In: Aspects of Network and System Theory, pp. 385–407. New York (1971)

  13. Kuijper, M.: An algorithm for constructing a minimal partial realization in the multivariable case. Syst. Control. Lett. 31, 225–233 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lenstra, A.K.: Factoring multivariate polynomials over finite fields. J. Comput. Syst. Sci. 30, 235–248 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mahler, K.: An analogue to Minkowski’s geometry of numbers in a field of series. Ann. Math. 42, 488–522 (1941)

    Article  MathSciNet  Google Scholar 

  16. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15, 122–127 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schmidt, G., Sidorenko, V.R.: Multi-sequence linear shift-register synthesis: the varying length case. In: Proc. IEEE Intern. Symposium on Inform. Theory, pp. 1738–1742. Seatle, USA (2006)

  18. Schmidt, G., Sidorenko, V.R., Bossert, M.: Decoding Reed–Solomon codes beyond half the minimum distance using shift-register synthesis. In: Proc. IEEE Intern. Symposium on Inform. Theory, pp. 459-463. Seatle, USA (2006)

  19. Schmidt, W.M.: Construction and estimation of bases in function fields. J. Number Theory 39, 181–224 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Van Barel, M., Bultheel, A.: A generalized minimal partial realization problem. Linear Algebra Appl. 254, 527–551 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, L.-P., Zhu, Y.-F.: F[x]-lattice basis reduction algorithm and multisequence synthesis. Sci. China, Ser. F 44, 321–328 (2001)

    MATH  MathSciNet  Google Scholar 

  22. Wang, L.-P., Zhu, Y.-F., Pei, D.-Y.: On the lattice basis reduction multisequence synthesis algorithm. IEEE Trans. Inf. Theory 50, 2905–2910 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wang, L.-P., Wang, Q.-L., Wang, K.-P.: A lattice-based linear shift register synthesis for multisequences of varying length. In: Proc. IEEE Intern. Symposium on Inform. Theory, pp. 1751–1754. Toronto, Canada (2008)

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for their valuable suggestions and comments. The research is supported by the National Natural Science Foundation of China (Grant No. 60773141 and No.10990011) and the National 863 Project of China (Grant No. 2006AA 01Z420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, LP. A lattice-based minimal partial realization algorithm for matrix sequences of varying length. Cryptogr. Commun. 3, 29–42 (2011). https://doi.org/10.1007/s12095-010-0037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-010-0037-8

Keywords

Mathematics Subject Classifications (2010)

Navigation