Abstract
The Cloud-Enabled Internet of Vehicles (CE-IoV) is a new paradigm that combines cloud computing, vehicular networks and the internet of things (IoT). It provides safety and infotainment applications for road users. It relies on the exchange of real-time messages known as beacons to achieve connectivity and ensure safety. The beacons contain the position, the identifier and the velocity of the vehicle. This data can be eavesdropped by a malicious attacker to construct a full trajectory of a target vehicle and track its user. The tracking violates the on-road users’ location privacy. It is the cyber-equivalent of stalking. Its consequences may be directly related to the user’s safety. Therefore, the privacy issue in CE-IoV is crucial and preserving it is a priority. In this paper, we propose a location privacy preserving solution for CE-IoV users. The solution relies on cooperativeness, obfuscation, and silence to reduce linkability and tracking. We proved its feasibility using a game theoretic approach. We further analysed the with simulations the proposed scheme performance and resiliency to Global Passive Attacker (GPA). The modelled GPA executes four eavesdropping and linking attacks to track the vehicles which are: semantic, syntactic, observation and mapping linking attacks. The simulation results prove that the solution is robust and resilient to the mentioned attacks with an average privacy level of 90%. We further analyse its robustness using an analytical model.
Similar content being viewed by others
References
Pandey V, Saini P (2019) Application layer scheduling in cloud: Fundamentals, review and research directions. Comput Syst Sci Eng 34(6):357–376
Liu C, Li K, Li K (2018) Minimal cost server configuration for meeting time-varying resource demands in cloud centers. IEEE Trans Parallel Distrib Syst 29(11):2503–2513
Liu C, Li K, Li K, Buyya R. A new cloud service mechanism for profit optimizations of a cloud provider and its users. IEEE Transactions on Cloud Computing. 2017 Jun 7
Li K, Mei J, Li K (2016) A fund-constrained investment scheme for profit maximization in cloud computing. IEEE Trans Serv Comput 11(6):893–907
Mathilde Carlier, "Projected share of new Internet-connected light-duty vehicles," Statista, 31 Mar 2021. [Online]. Available: https://www.statista.com/statistics/275849/number-of-vehicles-connected-to-the-internet/. Accessed 13 June 2021
Kang J, Yu R, Huang X, Jonsson M, Bogucka H, Gjessing S, Zhang Y (2016) Location privacy attacks and defenses in cloud-enabled internet of vehicles. IEEE Wirel Commun 23(5):52–59
Yu R, Zhang Y, Gjessing S, Xia W, Yang K (2013) Toward cloud-based vehicular networks with efficient resource management. IEEE Network 27(5):48–55
Benarous, L., Kadri B. (2017, September). Ensuring privacy and authentication for V2V resource sharing. In: Emerging Security Technologies (EST), 2017 Seventh International Conference on (pp. 1–6). IEEE
Jiang W, Jiang Y, Wang Y, Chen J, Xu Y. Mobile Internet Mobile Agent System Dynamic Trust Model for Cloud Computing. InInternational Conference on Human Centered Computing 2018 Dec 5 (pp. 169–180). Springer, Cham
Xie P, Ma G, Feng T, Yan Y, Han X (2020) Behavioral Feature and Correlative Detection of Multiple Types of Node in the Internet of Vehicles. CMC-Comput Mater Cont 64(2):1127–1137
Han W, Cheng M, Lei M, Xii H, Yang Y, Qian L (2020) Privacy Protection Algorithm for the Internet of Vehicles Based on Local Differential Privacy and Game Model. CMC-Comput Mater Contin 64(2):1025–1038
BOUALOUACHE A. (2016), PhD thesis, Security and Privacy in vehicular networks, USTHB, Algiers, Algeria.
Emara K. (2016), PhD Thesis, Safety-aware Location Privacy in Vehicular Ad-hoc Networks, Technical University of Munich, Munich, Germany.
Freudiger J., Shokri R., Hubaux J. P. (2009, August). On the optimal placement of mix zones. In International Symposium on Privacy Enhancing Technologies Symposium (pp. 216–234). Springer, Berlin, Heidelberg.
Freudiger J, Raya M, Félegyházi M, Papadimitratos P, Hubaux JP (2007) Mix-zones for location privacy in vehicular networks. In: ACM Workshop on Wireless Networking for Intelligent Transportation Systems (WiN-ITS) (No. LCA-CONF-2007–016).
Guo N, Ma L, Gao T (2018) Independent mix zone for location privacy in vehicular networks. IEEE Access 6:16842–16850
Memon I., Chen L., Arain Q. A., Memon H., Chen G. (2018). Pseudonym changing strategy with multiple mix zones for trajectory privacy protection in road networks. Int J Commun Syst, 31(1), e3437.
Arain QA, Memon I, Deng Z, Memon MH, Mangi FA, Zubedi A (2018) Location monitoring approach: multiple mix-zones with location privacy protection based on traffic flow over road networks. Multimed Tools Appl 77(5):5563–5607
Shokri R, Troncoso C, Diaz C, Freudiger J, Hubaux JP (2010, October) Unraveling an old cloak: k-anonymity for location privacy. In: Proceedings of the 9th annual ACM workshop on Privacy in the electronic society (pp. 115–118). ACM
Sampigethaya K, Huang L, Li M, Poovendran R, Matsuura K, Sezaki K (2005) CARAVAN: Providing location privacy for VANET. Washington Univ Seattle Dept of Electrical Engineering.
Buttyán L, Holczer T, Weimerskirch A, Whyte W (2009, October) Slow: A practical pseudonym changing scheme for location privacy in vanets. In 2009 IEEE vehicular networking conference (VNC). IEEE, pp. 1–8
Sampigethaya K, Li M, Huang L, Poovendran R (2007) AMOEBA: Robust location privacy scheme for VANET. IEEE Journal on Selected Areas in communications 25(8): 1569–1589
Pan Y, Li J (2012, May) An analysis of anonymity for cooperative pseudonym change scheme in one-dimensional VANETs. In: Computer Supported Cooperative Work in Design (CSCWD), 2012 IEEE 16th International Conference on (pp. 251–257). IEEE
Wasef A, Shen XS (2010) REP: Location privacy for VANETs using random encryption periods. Mobile Net Appl 15(1):172–185
Lu R, Lin X, Luan TH, Liang X, Shen X (2012) Pseudonym changing at social spots: An effective strategy for location privacy in vanets. IEEE Trans Veh Technol 61(1):86
Pan Y, Li J (2013) Cooperative pseudonym change scheme based on the number of neighbors in VANETs. J Netw Comput Appl 36(6):1599–1609
Emara K., Woerndl W., Schlichter J. (2015, June). CAPS: Context-aware privacy scheme for VANET safety applications. In: Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks (p. 21). ACM.
Alnahash N., Corser G., Fu H., Zhu Y. (2014) Protecting vehicle privacy using dummy events. In: 2014 American Society For Engineering Education North Central Section Conference (ASEE NCS 2014)
Boualouache A, Moussaoui S (2017) TAPCS: Traffic-aware pseudonym changing strategy for VANETs. Peer Netw Appl 10(4):1008–1020
Xingjun S, Huibin X (2014) An effective scheme for location privacy in VANETs. J Networks 9(8):2239
Boualouache A., Senouci S. M., Moussaoui, S. (2016, December). Towards an efficient pseudonym management and changing scheme for vehicular ad-hoc networks. In: Global Communications Conference (GLOBECOM), 2016 IEEE (pp. 1–7). IEEE
Pan Y., Shi Y., Li J. (2017, July). A novel and practical pseudonym change scheme in vanets. In: International conference on innovative mobile and internet services in ubiquitous computing (pp. 413–422). Springer, Cham
Benarous, L. and Kadri, B., 2019. A novel privacy preserving scheme for cloud-enabled internet of vehicles users. In: Security, privacy and trust in the IoT Environment (pp. 227–254). Springer, Cham
Acknowledgements
We thank Pr. Mohsen Guizani from the University of Idaho, United States for his constructive comments and advices.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Benarous, L., Kadri, B. Obfuscation-based location privacy-preserving scheme in cloud-enabled internet of vehicles. Peer-to-Peer Netw. Appl. 15, 461–472 (2022). https://doi.org/10.1007/s12083-021-01233-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12083-021-01233-z