[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Cognitive IoT relaying NOMA networks with user clustering and imperfect SIC

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

To implement machine type communications (MTCs) in next generation mobile networks, Narrowband-Internet of Things (NB-IoT) need be studied. Such NB-IoT has been released by the third generation partnership project (3GPP) as a promising method to exhibit extended coverage and low energy consumption, especially for cheap MTC devices. However, the existing NB-IoT using orthogonal multiple access (OMA) scheme which cannot provide connectivity for a massive MTC devices. In this paper, we consider NB-IoT using non-orthogonal multiple access (NOMA). We find that power allocation factors for devices in clustering users as main enabler to exhibit differences in term of performance of devices. The worse situation of imperfect successive interference cancellation (SIC) is further studied due to main reason regarding degraded system performance. We derive closed-form expressions of outage probability for devices in a cluster to highlight main parameters affecting quality of devices. We verify our mathematical analysis via Monte-Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang L, Xiao M, Wu G, Alam M, Liang Y-C, Li S (2017) A survey of advanced techniques for spectrum sharing in 5G networks. IEEE Wireless Commun 24(5):44–51

    Article  Google Scholar 

  2. Raj V, Dias I, Tholeti T, Kalyani S (2018) Spectrum access in cognitive radio using a two-stage reinforcement learning approach. IEEE J Sel Topics Signal Process 12(1):20–34

    Article  Google Scholar 

  3. Kishore R, Gurugopinath S, Sofotasios PC, Muhaidat S, Al-Dhahir N (2019) Opportunistic ambient backscatter communication in RF-powered cognitive radio networks. In: IEEE Transactions on cognitive communications and networking, vol 5(2), pp 413–426

  4. Yan W et al (2018) A Contract-based incentive mechanism in RF-powered backscatter cognitive radio networks, 2018 10th International conference on wireless communications and signal processing (WCSP), Hangzhou, pp 1–6

  5. Guo H, Long R, Liang Y (2019) Cognitive Backscatter Network: A Spectrum Sharing Paradigm for Passive IoT. In: IEEE Wireless communications letters, vol 8(5), pp 1423–1426

  6. Gao X, Wang P, Niyato D, Yang K, An J (2019) Auction-based time scheduling for backscatter-aided rf-powered cognitive radio networks. In: IEEE Transactions on wireless communications, vol 18(3), pp 1684–1697

  7. Lyu B, Guo H, Yang Z, Gui G (2018) Throughput maximization for hybrid backscatter assisted cognitive wireless powered radio networks. In: IEEE Internet of things journal, vol 5(3), pp 2015–2024

  8. Liu X, Ansari N (2017) Green relay assisted D2D communications with dual batteries in heterogeneous cellular networks for IoT. IEEE Internet Things J 4(5):1707–1715

    Article  Google Scholar 

  9. Goldsmith A, Jafar SA, Maric I, Srinivasa S (2009) Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proc IEEE 97(5):894–914

    Article  Google Scholar 

  10. Al-Imari M, Xiao P, Imran MA (2015) Receiver and resource allocation optimization for uplink NOMA in 5G wireless networks. In: Proc Int Symp Wireless Commun. Syst. (ISWCS), pp 151–155

  11. Li X, Wang Q, Liu Y, Tsiftsis TA, Ding Z, Nallanathan A (2020) UAV-aided multi-way noma networks with residual hardware impairments. In: IEEE Wireless communications letters, vol. 9, no. 9, pp. 1538-1542

  12. Li X et al (2020) Cooperative wireless-powered NOMA relaying for B5G IoT networks with hardware impairments and channel estimation errors. In: IEEE Internet of things journal, https://doi.org/10.1109/JIOT.2020.3029754

  13. Na Z, Lv J, Jiang F, Xiong M, Zhao N (Aug. 2019) Joint subcarrier and subsymbol allocation-based simultaneous wireless information and power transfer for multiuser GFDM in IoT. IEEE Internet Things J 6(4):5999–6006

    Article  Google Scholar 

  14. Saito Y, Kishiyama Y, Benjebbour A, Nakamura T, Li A, Higuchi K (2013) Non-orthogonal multiple access (NOMA) for cellular future radio access. In: Proc IEEE 77th Veh. Technol. Conf. (VTC Spring), pp 1–5

  15. Do D-T, Le A-T (2019) NOMA based cognitive relaying: Transceiver hardware impairments, relay selection policies and outage performance comparison. Comput Commun 146:144–154

    Article  Google Scholar 

  16. Nguyen T-L, Do D-T (2018) Power allocation schemes for wireless powered NOMA systems with imperfect CSI: an application in multiple antenna-based relay. Int J Commun Syst 31(15):e3789

    Article  Google Scholar 

  17. Li X, Zhao M, Liu Y, Li L, Ding Z, Nallanathan A (2020) Secrecy analysis of ambient backscatter NOMA systems under I/Q imbalance. In: IEEE Transactions on vehicular technology, vol. 69, no. 10, pp. 12286-12290

  18. Do D-T, Van Nguyen M-S, Hoang T-A, Byung M (2019) Lee, exploiting joint base station equipped multiple antenna and Full-Duplex D2D users in power domain division based multiple access networks. Sensors 19(11):2475

    Article  Google Scholar 

  19. Do D-T, Le A-T, Le C-B, Lee BM (2019) On exact outage and throughput performance of cognitive radio based non-orthogonal multiple access networks with and without D2D link. Sensors (Basel) 19 (15):3314

    Article  Google Scholar 

  20. Kim J-B, Lee I-H (2015) Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Commun Lett 19(11):1949–1952

    Article  Google Scholar 

  21. Jiao R, Dai L, Zhang J, MacKenzie R, Hao M (2017) On the performance of NOMA-based cooperative relaying systems over Rician fading channels. IEEE Trans Veh Technol 66(12):11409–11413

    Article  Google Scholar 

  22. Lv L, Chen J, Ni Q, Ding Z, Jiang H (2018) Cognitive non-orthogonal multiple access with cooperative relaying: a new wireless frontier for 5G spectrum sharing. IEEE Commun Mag 56(4):188–195

    Article  Google Scholar 

  23. Mohammadi M et al (2019) Full-duplex non-orthogonal multiple access for next generation wireless systems. IEEE Commun Mag 57(5):110–116

    Article  Google Scholar 

  24. Song Z, Wang X, Liu Y, Zhang Z (2019) Joint spectrum resource allocation in NOMA-based cognitive radio network with SWIPT. In: IEEE Access, vol 7, pp 89594–89603

  25. Lv L, Ni Q, Ding Z, Chen J (2017) Application of non-orthogonal multiple access in cooperative spectrum-sharing networks over Nakagami-m fading channels. IEEE Trans Veh Technol 66(6):5506–5511

    Article  Google Scholar 

  26. Liu Y, Ding Z, Elkashlan M, Yuan J (2016) Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Trans Veh Technol 65(12):10152–10157

    Article  Google Scholar 

  27. Bariah L, Muhaidat S, Al-Dweik A (2020) Error performance of NOMA-based cognitive radio networks with partial relay selection and interference power constraints. In: IEEE Transactions on Communications, vol 68(2), pp 765–777

  28. Song Y, Yang W, Xiang Z, Sha N, Wang H, Yang Y (2020) An analysis on secure millimeter wave NOMA communications in cognitive radio networks. In: IEEE Access, vol 8, pp 78965–78978

  29. Chen B et al (2019) Secure primary transmission assisted by a secondary full-duplex NOMA relay. In: IEEE Transactions on vehicular technology, vol 68(7), pp 7214–7219

  30. Beyene YD et al (2017) NB-Iot technology overview and experience from cloud-RAN implementation. IEEE Wireless Commun 24(3):26–32

    Article  MathSciNet  Google Scholar 

  31. Arzykulov S, Tsiftsis TA, Nauryzbayev G, Abdallah M (2019) Outage performance of cooperative underlay CR-NOMA with imperfect CSI. In: IEEE Communications Letters, vol. 23, no. 1, pp. 176-179

  32. Zhong C, Zhang Z (2016) Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun Lett 20(12):2478–2481

    Article  Google Scholar 

  33. Nguyen Xuan-Xinh, Do Dinh-Thuan (2019) System performance of cooperative NOMA with full-duplex relay over nakagami-m fading channels mobile information systems

  34. Kader MF, Shahab MB, Shin SY (2017) Exploiting non-orthogonal multiple access in cooperative relay sharing. In: IEEE Communications letters, vol 21(5), pp 1159–1162

  35. Yue X, Liu Y, Kang S, Nallanathan A, Ding Z (2018) Exploiting full/half-duplex user relaying in NOMA systems. In: IEEE Transactions on communications, vol 66(2), pp 560–575

  36. Gradshteyn IS, Ryzhik IM (2000) Table of integrals, series and products, 6th edn. Academic Press, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thuan Do.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Special Issue on Cognitive Models for Peer-to-Peer Networking in 5G and Beyond Networks and Systems

Guest Editors: Anil Kumar Budati, George Ghinea, Dileep Kumar Yadav and R. Hafeez Basha

Appendices

Appendix A: Proof of proposition 1

With the help Eqs. 14 and 5 we can write \(P_{U_{2} }\) as below

$$ \begin{array}{@{}rcl@{}} P_{U_{2} }^{P} &=& 1 - {\text{OP}} \left( \frac{\left| {g_{B2}} \right|^{2} K_{1} \eta_{B}} {\left| {g_{B2} } \right|^{2} K_{2} \eta_{B} + \left| {g_{R2} } \right|^{2} \eta_{R} + 1}\right.\\ &&\left. > \gamma_{th1} ,\frac{\left| {g_{B2} } \right|^{2} K_{2} \eta_{BS}} {\left|g_{R2} \right|^{2} \eta_{R} + 1} > \gamma_{th2} \right) \\ &=& 1 - \underbrace{\text{OP} \left( \left|g_{BP} \right|^{2} < \frac{\eta_{D}}{\eta},\left| {g_{B2}} \right|^{2} > \frac{\phi \left( \left| g_{R2} \right|^{2} \eta_{R} + 1 \right)}{\eta} \right)_{A_{1}}} \\ &-& \underbrace{\text{OP} \left( \left|g_{BP} \right|^{2} > \frac{\eta_{D}} {\eta},\left| g_{B2} \right|^{2} > \frac{\phi \left( \left|g_{R2}\right|^{2} \eta_{R} + 1 \right) \left| g_{BP} \right|^{2}} {\eta_{D}} \right).}_{A_{2}} \end{array} $$
(34)

Moreover, A1 can be rewritten as

$$ \begin{array}{@{}rcl@{}} A_{1} = {\text{OP}} \left( {\left| {g_{BP} } \right|^{2} < \frac{{\eta_{D}}} {\eta },\left| {g_{B2} } \right|^{2} > \frac{{\phi \left( {\left| {g_{R2} } \right|^{2} \eta_{R} + 1} \right)}} {\eta }} \right) \\ = \int\limits_{0}^{\frac{{\eta_{D}}} {\eta }} {f_{\left| {g_{BP} } \right|^{2} } \left( x \right)} \int\limits_{0}^{\infty} {f_{\left| {g_{R2} } \right|^{2} } \left( y \right)} \int\limits_{\frac{{\phi \left( {y\eta_{R} + 1} \right)}} {\eta }}^{\infty} {f_{\left| {g_{B2} } \right|^{2} } \left( z \right)} dzdydx. \end{array} $$
(35)

Putting Eq. 10 into Eq. 35, we get

$$ \begin{array}{@{}rcl@{}} A_{1} = \frac{{\left( {1 - e^{- \frac{{\eta_{D}}} {{G_{BP} \eta }}} } \right)e^{- \frac{\phi } {{G_{B2} \eta }}} }} {{G_{R2} }}\int\limits_{0}^{\infty} {e^{- \left( {\frac{{G_{B2} \eta + G_{R2} \phi \eta_{R} }} {{G_{R2} G_{B2} \eta }}} \right)x} } dx \\ = \frac{{\left( {1 - e^{- \frac{{\eta_{D}}} {{G_{BP} \eta }}} } \right)G_{B2} \eta e^{- \frac{\phi } {{G_{B2} \eta }}} }} {{\left( {G_{B2} \eta + G_{R2} \phi \eta_{R} } \right)}}. \end{array} $$
(36)

Then, the term A2 is calculated as

$$ \begin{array}{@{}rcl@{}} A_{2} = {\text{OP}} \left( {\left| {g_{BP} } \right|^{2} > \frac{{\eta_{D}}} {\eta },\left| {g_{B2} } \right|^{2} > \frac{{\phi \left( {\left| {g_{R2} } \right|^{2} \eta_{R} + 1} \right)\left| {g_{BP} } \right|^{2} }} {{\eta_{D}}}} \right) \\ = \int\limits_{\frac{{\eta_{D}}} {\eta }}^{\infty} {f_{\left| {g_{BP} } \right|^{2} } \left( x \right)} \int\limits_{0}^{\infty} {f_{\left| {g_{R2} } \right|^{2} } \left( y \right)} \int\limits_{\frac{{\phi \left( {y\eta_{R} + 1} \right)x}} {{\eta_{D}}}}^{\infty} {f_{\left| {g_{R2} } \right|^{2} } \left( z \right)} dzdxdy. \end{array} $$
(37)

Similarly, it is rewritten as

$$ \begin{array}{@{}rcl@{}} A_{2} = \frac{1} {{G_{BP} G_{R2} }}\int\limits_{\frac{{\eta_{D}}} {\eta }}^{\infty} {e^{- \frac{\phi } {{\eta_{D}G_{B2} }}x - \frac{x} {{G_{BP} }}} } \int\limits_{0}^{\infty} {e^{- \frac{{\phi \eta_{R} x}} {{\eta_{D}G_{B2} }}y - \frac{y} {{G_{R2} }}} } dxdy \\ = \frac{{G_{B2} \eta_{D}}} {{G_{BP} G_{R2} \phi \eta_{R} }}\int\limits_{\frac{{\eta_{D}}} {\eta }}^{\infty} {\frac{{e^{- \left( {\frac{{G_{B2} \eta_{D} + G_{BP} \phi }} {{G_{BP} G_{B2} \eta_{D}}}} \right)x} }} {{x + \frac{{G_{B2} \eta_{D}}} {{G_{R2} \phi \eta_{R} }}}}} dy. \end{array} $$
(38)

Based on [36, Eq. 3.352.2], A2 can be obtained as

$$ \begin{array}{@{}rcl@{}} &&A_{2} = - \frac{{G_{B2} \eta_{D}e^{\frac{{G_{B2} \eta_{D} + G_{BP} \phi }} {{G_{BP} G_{R2} \phi \eta_{R} }}} }} {{G_{BP} G_{R2} \phi \eta_{R} }}\\ &&Ei\left( { - \frac{{G_{B2} \eta_{D} + G_{BP} \phi }} {{G_{BP} G_{B2} \eta }} - \frac{{G_{B2} \eta_{D} + G_{BP} \phi }} {{G_{BP} G_{R2} \phi \eta_{R} }}} \right). \end{array} $$
(39)

Substituting Eqs. 36 and 38 into Eq. 34, the proof is completed.

Appendix B: Proof of proposition 2

To compute the outage probability for user U1, B1 can be first written as

$$ \begin{array}{@{}rcl@{}} B_{1} = {\text{OP}} \left( {\left| {g_{BP} } \right|^{2} < \frac{{\eta_{D}}} {\eta },\left| {g_{BR} } \right|^{2} > \frac{{\varepsilon_{1} \left( {\eta_{R} \left| {g_{R} } \right|^{2} + 1} \right)}} {\eta }} \right) \\ + {\text{OP}} \left( {\left| {g_{BP} } \right|^{2} > \frac{{\eta_{D}}} {\eta },\left| {g_{BR} } \right|^{2} > \frac{{\varepsilon_{1} \left( {\eta_{R} \left| {g_{R} } \right|^{2} + 1} \right)\left| {g_{BP} } \right|^{2} }} {{\eta_{D}}}} \right) \\ = \int\limits_{0}^{\frac{{\eta_{D}}} {\eta }} {f_{\left| {g_{BP} } \right|^{2} } \left( x \right)} \int\limits_{0}^{\infty} {f_{\left| {g_{R} } \right|^{2} } \left( y \right)} \int\limits_{\frac{{\varepsilon_{1} \left( {\eta_{R} y + 1} \right)}} {\eta }}^{\infty} {f_{\left| {g_{BR} } \right|^{2} } \left( z \right)} dzdydx \\ + \int\limits_{\frac{{\eta_{D}}} {\eta }}^{\infty} {f_{\left| {g_{BP} } \right|^{2} } \left( x \right)} \int\limits_{0}^{\infty} {f_{\left| {g_{R} } \right|^{2} } \left( y \right)} \int\limits_{\frac{{\varepsilon_{1} \left( {\eta_{R} y + 1} \right)x}} {{\eta_{D}}}}^{\infty} {f_{\left| {g_{BR} } \right|^{2} } \left( z \right)} dzdydx. \end{array} $$
(40)

Similarly, we can obtain B1 as

$$ \begin{array}{@{}rcl@{}} B_{1} = \frac{{\left( {1 - e^{- \frac{{\eta_{D}}} {{G_{BP} \eta }}} } \right)G_{BR} \eta e^{- \frac{{\varepsilon_{1} }} {{G_{BR} \eta }}} }} {{\left( {G_{BR} \eta + G_{R} \varepsilon_{1} \eta_{R} } \right)}} - \frac{{G_{BR} \eta_{D}e^{\frac{{G_{BR} \eta_{D} + G_{BP} \varepsilon_{1} }} {{G_{BP} G_{R} \varepsilon_{1} \eta_{R} }}} }} {{G_{BP} G_{BR} \varepsilon_{1} \eta_{R} }}\\ \times Ei\left( { - \frac{{G_{BR} \eta_{D} + G_{BP} \varepsilon_{1} }} {{G_{BP} G_{BR} \eta }} - \frac{{G_{BR} \eta_{D} + G_{BP} \varepsilon_{1} }} {{G_{BP} G_{R} \varepsilon_{1} \eta_{R} }}} \right). \end{array} $$
(41)

Furthermore, B2 can be calculated by

$$ B_{2} = {\text{OP}} \left( {\left| {g_{R1} } \right|^{2} > \frac{{\gamma_{th1} }} {{\eta_{R} }}} \right) = e^{- \frac{{\gamma_{th1} }} {{\eta_{R} G_{R1} }}} . $$
(42)

Finally, combining Eqs. 16 and 17 the closed-form for outage probability of U1 is given as Eq. 27.

It completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, AT., Do, DT., Chang, WT. et al. Cognitive IoT relaying NOMA networks with user clustering and imperfect SIC. Peer-to-Peer Netw. Appl. 14, 3170–3180 (2021). https://doi.org/10.1007/s12083-020-01061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-020-01061-7

Keywords

Navigation