Abstract
In this paper, we propose a new multicast tree framework to be used in peer-to-peer (P2P) live video streaming systems. The proposed system, adapts the tree links under high peer churn and runs in a totally distributed manner. In order to provide this dynamism and seamless streaming at the same time, we propose a cross layer design involving scalable video codec, backup parents and hierarchical clusters. The performance of the system is measured in real world environment PlanetLab that has nodes distributed all over the world. The experiments show that the proposed system provides high quality of experience (QoE) in terms of Peak Signal to Noise Ratio (PSNR), playback delay and duration of pauses. The proposed system also provides incentive mechanism to its users.
Similar content being viewed by others
References
(2004) PPLive., http://www.pptv.com
(2008) H.264 SVC reference software (JSVM 9.15) and manual. CVS server at garcon.ient.rwth-aachen.de
(2009) PPStream., http://www.ppstream.com
Allani M, Garbinato B, Pietzuch P (2012) Chams: Churn-aware overlay construction for media streaming. Peer-to-Peer Netw Appl 5(4):412–427
Asaduzzaman S, Qiao Y, Von Bochmann G (2010) Cliquestream: Creating an efficient and resilient transport overlay for peer-to-peer live streaming using a clustered dht. Peer-to-Peer Netw Appl 3(2):100–114
Banerjee S, Bhattacharjee B, Kommareddy C (2002) Scalable application layer multicast. In: Proceedings of the 2002 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. SIGCOMM. ACM, NY, USA, pp 205–217
Birrer S, Bustamante F (2005) Resilient peer-to-peer multicast without the cost. In: Proceedings 12th Annual Multimedia Computing and Networking Conf., SPIE Digital Library. MMCN, USA, pp 113–120
Bradai A, Abbasi U, Landa R, Ahmed T (2014) An efficient playout smoothing mechanism for layered streaming in p2p networks. Peer-to-Peer Netw Appl 7(2):101–117
Castro M, Druschel P, Kermarrec AM, Nandi A, Rowstron A, Singh A (2003) Splitstream: High-bandwidth multicast in cooperative environments. SIGOPS Oper Syst Rev 37(5):298–313
Chu YH, Rao SG, Seshan S, Hui Z (2002) A case for end system multicast. IEEE J Sel Areas Commun 20(8):1456–1471
Cohen B (2003) Incentives build robustness in bittorrent. In: Proceedings ACM SIGCOMM Workshop Economics of Peer-to-Peer Systems (P2PECON), pp 1–5
Fesci-Sayit M, Tunali ET, Tekalp AM (2009) Bandwidth-aware multiple multicast tree formation for p2p scalable video streaming using hierarchical clusters. In: ICIP. IEEE, pp 945–948
Fesci-Sayit M, Tunali ET, Tekalp AM (2012) Resilient peer-to-peer streaming of scalable video over hierarchical multicast trees with backup parent pools. Sig Proc: Image Comm 27(2):113–125
Habib A, Chuang J (2006) Service differentiated peer selection: an incentive mechanism for peer-to-peer media streaming. IEEE Trans Multimed 8(3):610–621
Hoong P, Matsuo H (2008) Palms: A reliable and incentive-based p2p live media streaming system. In: Advances in Communication Systems and Electrical Engineering, vol 4. Springer US, Lecture Notes in Electrical Engineering, pp 51–66
Hu H, Guo Y, Liu Y (2011) Peer-to-peer streaming of layered video: Efficiency, fairness and incentive. IEEE Trans Circuits Syst Video Techn 21(8):1013–1026
Hua KL, Chiu GM, Pao HK, Cheng YC (2013) An efficient scheduling algorithm for scalable video streaming over p2p networks. Comput Netw 57(14):2856–2868
Hwang CL, Masud A (1979) Multiple objective decision making, methods and applications: A state-of-the-art survey. Springer-Verlag, Berlin, Germany
Jeon JH, Sc S, Nam JS (2008) Overlay multicast tree recovery scheme using a proactive approach. Comput Commun 31(14):3163–3168
Kuo JL, Shih CH, Ho CY, Chen YC (2014) Advanced bootstrap and adjusted bandwidth for content distribution in peer-to-peer live streaming. Peer-to-Peer Networking and Applications, pp 1–18
Kurose JF, Ross KW (2012) Computer Networking: A Top-Down Approach, 6th. Pearson Education, Boston, USA
Kusumoto T, Kunichika Y, Katto J, Okubo S (2005) Proactive route maintenance and overhead reduction for application layer multicast. In: ICAS/ICNS. IEEE Computer Society, p 17
Kwon OC, Song H (2013) Adaptive tree-based p2p video streaming multicast system under high peer-churn rate. J Vis Commun Image Represent 24(3):203–216
Li B, Qu Y, Keung Y, Xie S, Lin C, Liu J, Zhang X (2008) Inside the New Coolstreaming: Principles, Measurements and Performance Implications. In: INFOCOM, pp 1031–1039
Liang C, Liu Y, Ross KW (2009) Topology optimization in multi-tree based p2p streaming system. In: ICTAI. IEEE Computer Society, pp 806–813
Liu J, Rao SG, Li B, Zhang H (2007a) Opportunities and challenges of peer-to-peer internet video broadcast. In: In (invited) Proceedings of the IEEE, Special Issue on Recent Advances in Distributed Multimedia Communications
Liu S, Chen M, Sengupta S, Chiang M, Li J, Chou PA (2010a) P2p streaming capacity under node degree bound. In: ICDCS. IEEE Computer Society, pp 587–598
Liu Z, Shen Y, Panwar SS, Ross KW, Wang Y (2007b) P2p video live streaming with mdc: Providing incentives for redistribution. In: ICME. IEEE, pp 48–51
Liu Z, Shen Y, Ross KW, Panwar SS, Wang Y (2008) Substream trading: Towards an open p2p live streaming system. ICNP, IEEE, pp 94–103
Liu Z, Shen Y, Ross KW, Panwar SS, Wang Y (2009) Layerp2p: Using layered video chunks in p2p live streaming. IEEE Trans Multimed 11(7):1340–1352
Liu Z, Wu C, Li B, Zhao S (2010b) UUSee: Large-Scale Operational On-Demand Streaming with Random Network Coding. In: INFOCOM. IEEE, pp 2070–2078
Magharei N, Rejaie R, Guo Y (2007) Mesh or multiple-tree: A comparative study of live p2p streaming approaches. In: INFOCOM. IEEE, pp 1424–1432
Magnetto A, Gaeta R, Grangetto M, Sereno M (2010) Turinstream: A totally push, robust, and efficient p2p video streaming architecture. IEEE Trans Multimed 12(8):901–914
Mol JD, Epema DH, Sips HJ (2007) The orchard algorithm: Building multicast trees for p2p video multicasting without free-riding. IEEE Trans Multimed 9(8):1593–1604
Montazeri A, Akbari B, Ghanbari M (2012) An incentive scheduling mechanism for peer-to-peer video streaming. Peer-to-Peer Netw Appl 5(3):257–278
Noh J, Girod B (2012) Time-shifted streaming in a tree-based peer-to-peer system. J Commun 7(3):202–212
Ozcelebi T, Sunay M, Tekalp M, Civanlar M (2007) Cross-layer optimized rate adaptation and scheduling for multiple-user wireless video streaming. IEEE J Sel Areas Commun 25(4):760–769
Park K, Pack S, Kwon TT (2010) An adaptive peer-to-peer live streaming system with incentives for resilience. Comput Netw 54(8):1316–1327
Peterson L, Anderson T, Culler D, Roscoe T (2003) A blueprint for introducing disruptive technology into the internet. SIGCOMM Comput Commun Rev 33(1):59–64
Pianese F, Perino D, Keller J, Biersack EW (2007) Pulse: An adaptive, incentive-based, unstructured p2p live streaming system. IEEE Trans Multimed 9(8):1645–1660
Savas S S, Tekalp A M, Gurler C G (2011) Adaptive multi-view video streaming over p2p networks considering quality of experience. In: Proceedings of the 2011 ACM Workshop on Social and Behavioural Networked Media Access. SBNMA. ACM, NY, USA, pp 53–58
Su X, Dhaliwal SK (2010) Incentive mechanisms in p2p media streaming systems. IEEE Internet Comput 14(5):74–81
Tran DA, Hua KA, Do TT (2004) A peer-to-peer architecture for media streaming. IEEE J Sel Areas Commun 22:121–133
Tunali ET, Sayit M Optimal backup parent pools for resilient multicast trees on peer to peer networks. Turkish Journal of Electrical Engineering and Computer Sciences. doi:10.3906/elk-1211-146
Wang F, Xiong Y, Liu J (2010) mtreebone: A collaborative tree-mesh overlay network for multicast video streaming. IEEE Trans Parallel Distrib Syst 21(3):379–392
Xu Y, Zhu C, Zeng W, Li X J (2012) Multiple description coded video streaming in peer-to-peer networks. Sig Proc: Image Comm 27(5):412–429
Yang S, Wang X (2010) An incentive mechanism for tree-based live media streaming service. J Netw 5:57–64
Acknowledgements
The authors thank Prof. Dr. A. Murat Tekalp and Asst. Prof. Dr. Hasan Bulut for their remarks at the early stages of this work and the reviewers for their helpful comments.
Conflict of interests
We have no potential conflict of interest.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Sayit, M., Demirci, S., Kaymak, Y. et al. Adaptive, incentive and scalable dynamic tree overlay for P2P live video streaming. Peer-to-Peer Netw. Appl. 9, 1074–1088 (2016). https://doi.org/10.1007/s12083-015-0390-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12083-015-0390-7